The proper functioning of oral-facial motor systems is necessary for the survival of humans. The ingestive behaviors of mammals begins with suckling and progresses to drinking and chewing. Presently, there are very few studies addressing how the brain is organized to produce these behaviors. Even less is known about the etiology of various oral-motor disorders such as tardive dyskinesia, bruxism, and myofacial pain dysfunction syndromes. The long-term goals of this research are to understand both the mechanisms underlying the central nervous system control of normal jaw movements that occur during activities such as drinking and chewing, as well as the abnormal jaw movements that occur during various disorders.
The specific aims of this proposal are to continue investigations, at the cellular level, into the neuronal mechanisms controlling trigeminal neuronal membrane excitability and burst discharge that are associated with the critical transition from primitive suckling behavior to adult-like mastication in the rat. We will combine whole cell patch clamp recording methods of neurons within the trigeminal nuclei responsible for oral-motor activity (mesencephalic V neurons and trigeminal interneurons) in brain slices with microstimulation, neurochemical, and mathematical modeling techniques to more fully elucidate 1) the mechanisms controlling excitability, and 2) the local chemical and electrical microcircuitry of these neurons. The project is divided into two Specific Aims.
In Specific Aim I we will determine the locations of, and ionic mechanisms underlying, intrinsic burst generation in Mes V and trigeminal interneurons in the vicinity of the trigeminal motor nucleus and test the hypothesis that the underlying conductances are substrates for modulation by metabotropic glutamate receptor (mGluR) and serotonergic (5-HT) receptor activation.
Specific Aim II focuses on characterizing the local excitatory and inhibitory chemical and electrical synaptic interactions that occur between distinct trigeminal neurons, and the modulation of these interactions by activation of mGluR and 5-HT receptors. The results of the proposed studies will provide insights into the local microcircuitry and the cellular mechanisms controlling discharge of distinct populations of trigeminal neurons involved in production of jaw movements at distinct developmental time points, and will serve as a cellular foundation for creation of neuronal models of masticatory rhythm and burst pattern generation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
5R01DE006193-23
Application #
7046819
Study Section
Integrative, Functional and Cognitive Neuroscience 8 (IFCN)
Program Officer
Kusiak, John W
Project Start
1983-08-01
Project End
2008-03-31
Budget Start
2006-04-01
Budget End
2007-03-31
Support Year
23
Fiscal Year
2006
Total Cost
$307,598
Indirect Cost
Name
University of California Los Angeles
Department
Social Sciences
Type
Schools of Arts and Sciences
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Tsuruyama, Kentaro; Hsiao, Chie-Fang; Chandler, Scott H (2013) Participation of a persistent sodium current and calcium-activated nonspecific cationic current to burst generation in trigeminal principal sensory neurons. J Neurophysiol 110:1903-14
Hsiao, Chie-Fang; Kaur, Gurvinder; Vong, Angela et al. (2009) Participation of Kv1 channels in control of membrane excitability and burst generation in mesencephalic V neurons. J Neurophysiol 101:1407-18
Hsiao, Chie-Fang; Gougar, Kelly; Asai, J et al. (2007) Intrinsic membrane properties and morphological characteristics of interneurons in the rat supratrigeminal region. J Neurosci Res 85:3673-86
Enomoto, Akifumi; Han, Juliette M; Hsiao, Chie-Fang et al. (2007) Sodium currents in mesencephalic trigeminal neurons from Nav1.6 null mice. J Neurophysiol 98:710-9
Enomoto, Akifumi; Han, Juliette M; Hsiao, Chie-Fang et al. (2006) Participation of sodium currents in burst generation and control of membrane excitability in mesencephalic trigeminal neurons. J Neurosci 26:3412-22
Tanaka, Susumu; Chandler, Scott H (2006) Serotonergic modulation of persistent sodium currents and membrane excitability via cyclic AMP-protein kinase A cascade in mesencephalic V neurons. J Neurosci Res 83:1362-72
Wu, Nanping; Enomoto, Akifumi; Tanaka, Susumu et al. (2005) Persistent sodium currents in mesencephalic v neurons participate in burst generation and control of membrane excitability. J Neurophysiol 93:2710-22
Hsiao, Chie-Fang; Wu, Nanping; Chandler, Scott H (2005) Voltage-dependent calcium currents in trigeminal motoneurons of early postnatal rats: modulation by 5-HT receptors. J Neurophysiol 94:2063-72
Tanaka, Susumu; Wu, Nanping; Hsaio, Chie-Fang et al. (2003) Development of inward rectification and control of membrane excitability in mesencephalic v neurons. J Neurophysiol 89:1288-98
Hsiao, Chie-Fang; Wu, Nanping; Levine, Michael S et al. (2002) Development and serotonergic modulation of NMDA bursting in rat trigeminal motoneurons. J Neurophysiol 87:1318-28

Showing the most recent 10 out of 41 publications