This competing renewal continues to be based on the need for design and development of new biomaterials that will be utilized in repair of defective tooth enamel affected by genetic or environmental factors. We will focus on the study of fundamental chemical and biological principles of organic matrix assembly, disassembly, degradation, and control of mineral nucleation and growth in enamel biomineralization. We will continue developing biomimetic strategies for the synthesis of enamel-like material. We hypothesize that the highly organized carbonated hydroxyapatite crystals in enamel continuously grow by means of complex protein- protein, protein-proteinase, and protein-mineral interactions that are primarily controlled by the formation of a broad range of quaternary structures of amelogenin undergoing proteolytic possessing and interacting with non-amelogenins. We further hypothesize that functional enamel-like material can be prepared in a cell-free system by using a chitosan-amelogenin as the basic structural framework and incorporating principles that we have learned and are continuing to learn from our in vitro and in vivo studies. We propose:
Aim I. To investigate amelogenin-enamelin interactions at a nanoscale level in vitro and in vivo. To study the dynamics of calcium phosphate mineralization events at a nanoscale level when enamelin is combined with amelogenin, using high resolution in situ atomic force (AFM) and in situ transmission electron microscopy (TEM).
Aim II. To determine the amount of protein occluded inside synthetic crystals before and after C-terminal cleavage of amelogenin as well as in enamel crystals isolated from Mmp-20 knock-out animals. To investigate the dynamics of postnucleation mineralization events at a nanoscale level during Mmp-20 proteolysis of amelogenin, using high resolution in situ AFM and TEM.
Aim III. To apply chitosan-based hydrogels as mineralization matrices in the development of biomimetic strategies for re-growth of a functional enamel-like material that could be used in the clinical setting to halt incipient carious lesions. Elucidating the dynamic interactions of enamelin and Mmp-20 with amelogenin proposed in aims I- II will contribute to our understanding of the structural biology and function of the enamel extracellular matrix in vivo, and will provide a soli ground for the design and development of improved dental materials (aim III). Moreover, this study will have a significant impact on the field of biomineralization, macromolecular self-assembly, protein structure, and the understanding of pathological enamel formation.

Public Health Relevance

Despite its significant resistant to fracture and wear tooth enamel can be damaged by caries, erosion, and other genetic and environmental diseases. Because enamel does not regenerate itself, efforts to develop improved biomaterials with mechanical and esthetic attributes close to those of natural enamel is timely and justified. We propose that enamel-inspired biomaterials could be developed as a future generation of dental restorative material. The new biomaterials will have highly ordered mineral micro architecture, and these apatitic materials will fuse readily with existing enamel mineral surfaces.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
4R01DE013414-13
Application #
9067301
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Wan, Jason
Project Start
1999-12-01
Project End
2017-05-31
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
13
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Southern California
Department
Dentistry
Type
Schools of Dentistry/Oral Hygn
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90032
Prajapati, S; Ruan, Q; Mukherjee, K et al. (2018) The Presence of MMP-20 Reinforces Biomimetic Enamel Regrowth. J Dent Res 97:84-90
Mukherjee, Kaushik; Ruan, Qichao; Nutt, Steven et al. (2018) Peptide-Based Bioinspired Approach to Regrowing Multilayered Aprismatic Enamel. ACS Omega 3:2546-2557
Klein, Ophir D; Duverger, Olivier; Shaw, Wendy et al. (2017) Meeting report: a hard look at the state of enamel research. Int J Oral Sci 9:e3
Ruan, Qichao; Liberman, David; Bapat, Rucha et al. (2016) Efficacy of amelogenin-chitosan hydrogel in biomimetic repair of human enamel in pH-cycling systems. J Biomed Eng Inform 2:119-128
Prajapati, Saumya; Tao, Jinhui; Ruan, Qichao et al. (2016) Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals. Biomaterials 75:260-270
Ruan, Qichao; Liberman, David; Zhang, Yuzheng et al. (2016) Assembly of Layered Monetite-Chitosan Nanocomposite and Its Transition to Organized Hydroxyapatite. ACS Biomater Sci Eng 2:1049-1058
Ren, Dongni; Ruan, Qichao; Tao, Jinhui et al. (2016) Amelogenin Affects Brushite Crystal Morphology and Promotes Its Phase Transformation to Monetite. Cryst Growth Des 16:4981-4990
Mazumder, P; Prajapati, S; Bapat, R et al. (2016) Amelogenin-Ameloblastin Spatial Interaction around Maturing Enamel Rods. J Dent Res 95:1042-8
Su, Jingtan; Chandrababu, Karthik Balakrishna; Moradian-Oldak, Janet (2016) Ameloblastin peptide encoded by exon 5 interacts with amelogenin N-terminus. Biochem Biophys Rep 7:26-32
Bauskar, Aditi; Mack, Wendy J; Mauris, Jerome et al. (2015) Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye. PLoS One 10:e0138958

Showing the most recent 10 out of 65 publications