The overall objective of the proposed research is to develop non-invasive optical devices for the detection and diagnosis of early dental caries (dental decay). New, more sophisticated diagnostic tools are needed for the detection and characterization of caries lesions in the early stages of development. If carious lesions are detected early enough, they can be arrested/reversed by non-surgical means through fluoride therapy, anti-bacterial therapy, dietary changes, or by low intensity laser irradiation. The principal factor limiting optical imaging through the enamel of the tooth in the visible range of 400-700-nm is light scattering. Light scattering in sound enamel and dentin is sufficiently strong in the visible range to obscure light transmission through the tooth. The magnitude of light scattering in dental enamel decreases markedly with increasing wavelength. Therefore, we hypothesize that the near-IR region from 830-1550-nm offers the greatest potential for new optical imaging modalities due to the weak scattering and absorption in sound dental hard tissue. At longer wavelengths, absorption of water in the tissue increases markedly reducing the penetration of IR light. The overall objectives of this proposal will be achieved through the following specific aims: (1) Measure the optical constants and light scattering anisotropy and phase function of sound dental hard tissue at wavelengths in the near- IR between 660 and 1550-nm for polarized and unpolarized light and determine the changes in those optical parameters that occur upon demineralization during the caries process; (2) Develop near-IR polarization sensitive optical coherence tomography (PS- OCT) for the detection, diagnosis, and imaging of early caries lesions and for the monitoring of lesion progression in simulated caries models; (3) Develop near-IR transillumination for the detection and imaging of early interproximal caries lesions. It is likely that if these studies and future clinical trials are a success, that this novel technology for imaging dental hard tissue will be employed for the detection and monitoring of early carious lesions without the use of ionizing radiation, thereby enabling conservative non-surgical intervention and the preservation of healthy tissue structure. Moreover, it is probable that this proposed imaging technology would enable the clinician to detect and quantify the severity of occlusal lesions that are not resolvable with conventional radiography due to the surrounding sound tissue structure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
5R01DE014698-03
Application #
6738095
Study Section
Diagnostic Imaging Study Section (DMG)
Program Officer
Hunziker, Rosemarie
Project Start
2002-08-01
Project End
2006-05-31
Budget Start
2004-06-01
Budget End
2006-05-31
Support Year
3
Fiscal Year
2004
Total Cost
$265,125
Indirect Cost
Name
University of California San Francisco
Department
Dentistry
Type
Schools of Dentistry
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Chang, Nai-Yuan N; Jew, Jamison M; Fried, Daniel (2018) Lesion Dehydration Rate Changes with the Surface Layer Thickness during Enamel Remineralization. Proc SPIE Int Soc Opt Eng 10473:
Chan, Kenneth H; Fried, Daniel (2018) Multispectral cross-polarization reflectance measurements suggest high contrast of demineralization on tooth surfaces at wavelengths beyond 1300 nm due to reduced light scattering in sound enamel. J Biomed Opt 23:1-4
Simon, Jacob C; Curtis, Donald A; Darling, Cynthia L et al. (2018) Multispectral near-infrared reflectance and transillumination imaging of occlusal carious lesions: Variation in lesion contrast with lesion depth. Proc SPIE Int Soc Opt Eng 10473:
Berg, Rhett A; Simon, Jacob C; Fried, Daniel et al. (2017) Optical changes of dentin in the near-IR as a function of mineral content. Proc SPIE Int Soc Opt Eng 10044:
Simon, Jacob C; Kang, Hobin; Staninec, Michal et al. (2017) Near-IR and CP-OCT imaging of suspected occlusal caries lesions. Lasers Surg Med 49:215-224
Chang, Nai-Yuan N; Jew, Jamison M; Simon, Jacob C et al. (2017) Influence of multi-wavelength laser irradiation of enamel and dentin surfaces at 0.355, 2.94, and 9.4??m on surface morphology, permeability, and acid resistance. Lasers Surg Med 49:913-927
Lee, Robert C; Jang, Andrew; Fried, Daniel (2017) Near-infrared imaging of enamel hypomineralization due to developmental defects. Proc SPIE Int Soc Opt Eng 10044:
Fried, William A; Simon, Jacob C; Darling, Cynthia L et al. (2017) High-Contrast Reflectance Imaging of Composite Restorations Color-Matched to Tooth Structure at 1000-2300-nm. Proc SPIE Int Soc Opt Eng 10044:
Chang, Nai-Yuan N; Jew, Jamison; Simon, Jacob C et al. (2017) Influence of Multi-Wavelength Laser Irradiation of Enamel and Dentin Surfaces on Surface Morphology and Permeability. Proc SPIE Int Soc Opt Eng 10044:
Simon, Jacob C; Darling, Cynthia L; Fried, Daniel (2017) Assessment of cavitation in artificial approximal dental lesions with near-IR imaging. Proc SPIE Int Soc Opt Eng 10044:

Showing the most recent 10 out of 72 publications