The goal of the Candida Genome Database (CGD) is to implement and develop a database containing comprehensive annotated information about the genome of the human fungal pathogen, Candida albicans. C. albicans has become the third or fourth most common nosocomial bloodstream isolate;mortality rates are high (35% or greater) and treatment is costly. It is thus vital that there is a comprehensive and up to date resource for researchers investigating the biology and pathogenesis of C. albicans, as such a resource accelerates their research. In this proposal we propose to improve the C. albicans'genome sequence and its annotation, the incorporation of the genome sequences of other closely related fungi, and curation of the research literature for those organisms. We also propose to incorporate tools for the visualization and searching of microarray data, and to add new protein pages to the database with comprehensive details about predicted proteins encoded by the C. albicans genome. Finally, we propose to continue our core mission of curating the C. albicans literature, extracting gene names, descriptions, phenotypes and Gene Ontology terms from the current literature on an ongoing basis. Together, successful completion of these aims will support and accelerate research into C. albicans, and thus have a positive impact on human health.

Public Health Relevance

C. albicans has become the third or fourth most common nosocomial bloodstream isolate;mortality rates are high (35% or greater) and treatment is costly. While many antifungal compounds do exist, these drugs are often of limited use because of their toxicity and side effects. In addition, there has been an emergence of antifungal resistance in the clinical setting. For example, significant resistance to the azole class of antifungal drugs has developed, especially in HIV-positive adults, where resistant strains are present in 21-32% of symptomatic patients. Thus, there is a need for alternative antifungal agents that are more specifically directed at the fungal cell and less toxic to human cells, and thus it is vital that C. albicans research continue as rapidly as possible. Successful completion of this project, to provide a curated and comprehensive Candida albicans database, will accelerate Candida research, and in doing so will aid in the fight against C. labicans infections, and thus significantly positively impact human health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
5R01DE015873-08
Application #
8045455
Study Section
Genomics, Computational Biology and Technology Study Section (GCAT)
Program Officer
Rodriguez-Chavez, Isaac R
Project Start
2004-04-01
Project End
2014-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
8
Fiscal Year
2011
Total Cost
$772,961
Indirect Cost
Name
Stanford University
Department
Genetics
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Ropars, Jeanne; Maufrais, Corinne; Diogo, Dorothée et al. (2018) Gene flow contributes to diversification of the major fungal pathogen Candida albicans. Nat Commun 9:2253
Skrzypek, Marek S; Binkley, Jonathan; Sherlock, Gavin (2018) Using the Candida Genome Database. Methods Mol Biol 1757:31-47
Skrzypek, Marek S; Binkley, Jonathan; Binkley, Gail et al. (2017) The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res 45:D592-D596
Skrzypek, Marek S; Binkley, Jonathan; Sherlock, Gavin (2016) How to Use the Candida Genome Database. Methods Mol Biol 1356:3-15
Feri, Adeline; Loll-Krippleber, Raphaël; Commere, Pierre-Henri et al. (2016) Analysis of Repair Mechanisms following an Induced Double-Strand Break Uncovers Recessive Deleterious Alleles in the Candida albicans Diploid Genome. MBio 7:
Muzzey, Dale; Sherlock, Gavin; Weissman, Jonathan S (2014) Extensive and coordinated control of allele-specific expression by both transcription and translation in Candida albicans. Genome Res 24:963-73
Keseler, Ingrid M; Skrzypek, Marek; Weerasinghe, Deepika et al. (2014) Curation accuracy of model organism databases. Database (Oxford) 2014:
Binkley, Jonathan; Arnaud, Martha B; Inglis, Diane O et al. (2014) The Candida Genome Database: the new homology information page highlights protein similarity and phylogeny. Nucleic Acids Res 42:D711-6
Muzzey, Dale; Schwartz, Katja; Weissman, Jonathan S et al. (2013) Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure. Genome Biol 14:R97
Inglis, Diane O; Sherlock, Gavin (2013) Ras signaling gets fine-tuned: regulation of multiple pathogenic traits of Candida albicans. Eukaryot Cell 12:1316-25

Showing the most recent 10 out of 17 publications