Porphyria cutanea tarda (PCT), the most common form of porphyria in humans, is associated with excess liver iron stores, alcohol abuse, hepatitis C and medicinal estrogen use. PCT is due to a reduction in the specific activity of the heme biosynthetic enzyme uroporphyrinogen decarboxylase (URO-D) in the liver. We have determined that impaired catalytic activity of URO-D is caused by a competitive inhibitor designated uroporphomethene, an octacarboxylic tetrapyrrole macrocycle with a single oxidized bridge carbon between two of the pyrrole rings. Oxidation of the bridge carbon is mediated by P450 and iron dependent reactions. Our first specific aim is to determine if the porphomethene is generated by oxidation of hydroxymethyl bilane which then cyclizes non- enzymatically or by oxidation of uroporphyrinogen, the fully reduced substrate of URO-D. We will test the hypothesis that specific P450s and iron are required to generate the porphomethene by transfecting wild type and mutant yeast with functional human P450 systems and by altering cytosolic iron concentrations. Our second specific aim will utilize a structural approach to define the mechanism of porphomethene mediated inhibition and to confirm our model of the URO-D reaction. Our third specific aim will address the cause of iron loading in PCT. We will test the hypothesis that suppression of hepcidin expression is responsible for the excess liver iron stores. Collectively, these studies will define the molecular mechanisms involved in the pathogenesis of PCT and explain the relative rarity of PCT in face of the high incidence of disease associated risk factors.

Public Health Relevance

Porphyria cutanea tarda (PCT) is characterized by accumulation in the liver of a compound that moves through the blood stream to the skin. The compound, called uroporphyrin, absorbs light from the sun and liberates energy particles that damage the skin. The disease is due to deficient activity of an enzyme in the liver. We have determined that deficient enzyme activity is caused by an inhibitor generated when excess iron is present in the liver. Many patients with PCT have liver damage from alcohol abuse, hepatitis C or from use of certain hormones. We propose to determine how environmental and genetic factors combine to allow the enzyme inhibitor to develop.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
3R01DK020503-29A1S1
Application #
7891080
Study Section
Erythrocyte and Leukocyte Biology Study Section (ELB)
Program Officer
Wright, Daniel G
Project Start
2009-09-17
Project End
2010-08-31
Budget Start
2009-09-17
Budget End
2010-08-31
Support Year
29
Fiscal Year
2009
Total Cost
$87,000
Indirect Cost
Name
University of Utah
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Yien, Yvette Y; Shi, Jiahai; Chen, Caiyong et al. (2018) FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity. J Biol Chem 293:19797-19811
Yien, Yvette Y; Ducamp, Sarah; van der Vorm, Lisa N et al. (2017) Mutation in human CLPX elevates levels of ?-aminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria. Proc Natl Acad Sci U S A 114:E8045-E8052
Piel 3rd, Robert B; Shiferaw, Mesafint T; Vashisht, Ajay A et al. (2016) A Novel Role for Progesterone Receptor Membrane Component 1 (PGRMC1): A Partner and Regulator of Ferrochelatase. Biochemistry 55:5204-17
Kim, Hyung J; Jeong, Mi-Young; Parnell, Timothy J et al. (2016) The Plasma Membrane Protein Nce102 Implicated in Eisosome Formation Rescues a Heme Defect in Mitochondria. J Biol Chem 291:17417-26
Hanson, W Miachel; Chen, Zhe; Jackson, Laurie K et al. (2016) Reversible Oligonucleotide Chain Blocking Enables Bead Capture and Amplification of T-Cell Receptor ? and ? Chain mRNAs. J Am Chem Soc 138:11073-6
Bergonia, Hector A; Franklin, Michael R; Kushner, James P et al. (2015) A method for determining ?-aminolevulinic acid synthase activity in homogenized cells and tissues. Clin Biochem 48:788-95
Dailey, Harry A; Gerdes, Svetlana; Dailey, Tamara A et al. (2015) Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proc Natl Acad Sci U S A 112:2210-5
Farrell, Colin P; Parker, Charles J; Phillips, John D (2015) Exome sequencing for molecular characterization of non-HFE hereditary hemochromatosis. Blood Cells Mol Dis 55:101-3
Langendonk, Janneke G; Balwani, Manisha; Anderson, Karl E et al. (2015) Afamelanotide for Erythropoietic Protoporphyria. N Engl J Med 373:48-59
Medlock, Amy E; Shiferaw, Mesafint T; Marcero, Jason R et al. (2015) Identification of the Mitochondrial Heme Metabolism Complex. PLoS One 10:e0135896

Showing the most recent 10 out of 59 publications