The hepatic hemoproteins cytochromes P450 (P450s) are endoplasmic-reticulum (ER)- anchored enzymes engaged in the breakdown of endo- and xenobiotics such as drugs, carcinogens, toxins, natural and chemical products. On exposure to these agents, liver P450 content may be increased due to increased syntheses of its heme and protein moieties, or reduced due to its inactivation/destruction and/or proteolytic degradation. Such drug-mediated modulation of P450 content is known to significantly influence clinical drug-drug interactions. Because P450 synthesis requires heme, defective heme synthesis as in the genetically inherited, acute heme-deficient states clinically known as hepatic porphyrias, can lower P450 levels and thereby impair the metabolism of ingested drugs. Our finding indicates that severe hepatic heme depletion can also profoundly suppress the synthesis of hepatic proteins such as P450s, by shutting off their translation. This stems from increased phosphorylation of the ?-subunit of eukaryotic translational initiation factor eIF2 by a putative hepatic heme-sensitive eIF2? kinase, which is functionally unleashed when hepatic heme is severely depleted. Although the identity of this liver kinase had long remained elusive, we have cloned its cDNA from rat liver and cultured rat hepatocytes, expressed, purified, functionally characterized this enzyme and confirmed its identity as an eIF2? kinase. Our first major aim is to (i) establish its in vivo operation via eIF2?-interactions by various state-of-the-art techniques such as mammalian two-hybrid, chemical crosslinking/proteomic analyses, coimmunoprecipitation, as well as its tissue/intrahepatocellular localization;and (ii) use RNA interference and targeted gene knock out in mice to determine its in vivo physiological and pathological relevance. Our goal is to elucidate the translational suppression that may impair key physiological processes and thus contribute not only to the clinical symptoms of acute hepatic porphyrias, but also influence P450-dependent drug-drug interactions in man. Further, it is now increasingly evident that clinically relevant drug-drug interactions can also result from altered P450 turnover, elicited by drug-mediated P450 stabilization as well as enhanced drug-mediated P450 degradation, such as by the grapefruit furanocoumarins. Such ER-associated degradation of P450s entails their ubiquitylation, extraction from the ER and subsequent proteolysis by the cytosolic 26S proteasome. Heme results in an ER accumulation of ubiquitylated P450s, most likely by blocking their ER extraction and subsequent degradation. ER extraction requires ATP hydrolysis and thus could involve either the p97 AAA ATPase or the proteasomal 19S AAA ATPases. Thus, our second major goal is to characterize the relative roles of p97 and 19S AAA ATPases in this P450 degradation with heme as a probe. These studies are expected to elucidate how heme can affect the birth and death of these P450 proteins and thus modulate the effects and elimination of ingested drugs and environmental agents in man.

Public Health Relevance

Liver cytochromes P450 (P450s) are enzymes engaged in the breakdown of drugs, carcinogens, toxins, natural and chemical agents to water-soluble products. Exposure to these agents can increase liver P450 content or reduce it by enhancing protein degradation and this drug-mediated modulation of P450 content can significantly influence clinical drug-drug interactions. Our studies are aimed at elucidating the role of heme in the cellular processes that control P450 formation as well as their turnover. P450s, like blood hemoglobin, are heme-containing proteins, and their formation in the liver requires heme. However, acute liver heme depletion, a hallmark of acute life-threatening attacks of hepatic porphyrias (clinically defined by genetic defects in heme formation), also blocks P450 formation by functionally activating a normally heme-controlled inhibitor (eIF2? kinase) of protein synthesis, a process we wish to further characterize. Furthermore, heme can also block P450 turnover, a process we propose to mechanistically dissect and further characterize. The P450s chosen as prototypes are orthologs of CYP3A4, the major human liver and intestinal enzyme, and 2 other liver P450s that together are responsible for the metabolism of approximately 75% of clinically relevant drugs, toxins, and carcinogens, with consequently significant potential for drug-drug interactions and toxicity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK026506-29
Application #
8100145
Study Section
Xenobiotic and Nutrient Disposition and Action Study Section (XNDA)
Program Officer
Doo, Edward
Project Start
1980-07-01
Project End
2013-03-31
Budget Start
2011-07-01
Budget End
2013-03-31
Support Year
29
Fiscal Year
2011
Total Cost
$502,643
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Lewis-Ballester, Ariel; Forouhar, Farhad; Kim, Sung-Mi et al. (2016) Molecular basis for catalysis and substrate-mediated cellular stabilization of human tryptophan 2,3-dioxygenase. Sci Rep 6:35169
Kim, Sung-Mi; Wang, YongQiang; Nabavi, Noushin et al. (2016) Hepatic cytochromes P450: structural degrons and barcodes, posttranslational modifications and cellular adapters in the ERAD-endgame. Drug Metab Rev 48:405-33
Kim, Sung-Mi; Grenert, James P; Patterson, Cam et al. (2016) CHIP(-/-)-Mouse Liver: Adiponectin-AMPK-FOXO-Activation Overrides CYP2E1-Elicited JNK1-Activation, Delaying Onset of NASH: Therapeutic Implications. Sci Rep 6:29423
Wang, YongQiang; Kim, Sung-Mi; Trnka, Michael J et al. (2015) Human liver cytochrome P450 3A4 ubiquitination: molecular recognition by UBC7-gp78 autocrine motility factor receptor and UbcH5a-CHIP-Hsc70-Hsp40 E2-E3 ubiquitin ligase complexes. J Biol Chem 290:3308-32
Correia, Maria Almira; Wang, YongQiang; Kim, Sung-Mi et al. (2014) Hepatic cytochrome P450 ubiquitination: conformational phosphodegrons for E2/E3 recognition? IUBMB Life 66:78-88
Wang, YongQiang; Guan, Shenheng; Acharya, Poulomi et al. (2012) Multisite phosphorylation of human liver cytochrome P450 3A4 enhances Its gp78- and CHIP-mediated ubiquitination: a pivotal role of its Ser-478 residue in the gp78-catalyzed reaction. Mol Cell Proteomics 11:M111.010132
Acharya, Poulomi; Liao, Mingxiang; Engel, Juan C et al. (2011) Liver cytochrome P450 3A endoplasmic reticulum-associated degradation: a major role for the p97 AAA ATPase in cytochrome P450 3A extraction into the cytosol. J Biol Chem 286:3815-28
Wang, YongQiang; Guan, Shenheng; Acharya, Poulomi et al. (2011) Ubiquitin-dependent proteasomal degradation of human liver cytochrome P450 2E1: identification of sites targeted for phosphorylation and ubiquitination. J Biol Chem 286:9443-56
Correia, Maria Almira; Sinclair, Peter R; De Matteis, Francesco (2011) Cytochrome P450 regulation: the interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal. Drug Metab Rev 43:1-26
Kim, Sung-Mi; Acharya, Poulomi; Engel, Juan C et al. (2010) Liver cytochrome P450 3A ubiquitination in vivo by gp78/autocrine motility factor receptor and C terminus of Hsp70-interacting protein (CHIP) E3 ubiquitin ligases: physiological and pharmacological relevance. J Biol Chem 285:35866-77

Showing the most recent 10 out of 34 publications