Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
7R01DK031643-10
Application #
3230238
Study Section
Cellular Biology and Physiology Subcommittee 1 (CBY)
Project Start
1982-04-10
Project End
1994-03-31
Budget Start
1990-09-01
Budget End
1991-03-31
Support Year
10
Fiscal Year
1990
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Type
Schools of Arts and Sciences
DUNS #
053785812
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Fath, Karl R (2005) Characterization of myosin-II binding to Golgi stacks in vitro. Cell Motil Cytoskeleton 60:222-35
Ikonen, E; de Almeid, J B; Fath, K R et al. (1997) Myosin II is associated with Golgi membranes: identification of p200 as nonmuscle myosin II on Golgi-derived vesicles. J Cell Sci 110 ( Pt 18):2155-64
Mamajiwalla, S N; Burgess, D R (1995) Differential regulation of the activity of the 42 kD mitogen activated protein kinase (p42mapk) during enterocyte differentiation in vivo. Oncogene 11:377-86
Fath, K R; Trimbur, G M; Burgess, D R (1994) Molecular motors are differentially distributed on Golgi membranes from polarized epithelial cells. J Cell Biol 126:661-75
Fath, K R; Mamajiwalla, S N; Burgess, D R (1993) The cytoskeleton in development of epithelial cell polarity. J Cell Sci Suppl 17:65-73
Fath, K R; Burgess, D R (1993) Golgi-derived vesicles from developing epithelial cells bind actin filaments and possess myosin-I as a cytoplasmically oriented peripheral membrane protein. J Cell Biol 120:117-27
Mamajiwalla, S N; Fath, K R; Burgess, D R (1992) Development of the chicken intestinal epithelium. Curr Top Dev Biol 26:123-43
Broschat, K O (1990) Tropomyosin prevents depolymerization of actin filaments from the pointed end. J Biol Chem 265:21323-9
Fath, K R; Obenauf, S D; Burgess, D R (1990) Cytoskeletal protein and mRNA accumulation during brush border formation in adult chicken enterocytes. Development 109:449-59
Burgess, D R; Jiang, W P; Mamajiwalla, S et al. (1989) Intestinal crypt stem cells possess high levels of cytoskeletal-associated phosphotyrosine-containing proteins and tyrosine kinase activity relative to differentiated enterocytes. J Cell Biol 109:2139-44

Showing the most recent 10 out of 12 publications