In order to understand cellular mechanisms by which growth hormone (GH) produces its effects in adipocytes, we propose to combine expertise in cellular and molecular mechanisms of hormone action and receptor structure with broad experience in studying metabolic actions of GH. We shall characterize the regulation of glucose transport by GH in vitro to determine whether it exhibits the insulin-like, transitory and refractory properties unique to other actions of GH. The turnover of receptors will be assessed by measuring rates of receptor synthesis and degradation, and GH receptor recycling will be examined with specific inhibitors and trypsinized cells. Down-regulation of receptors will also be investigated as another indicator of dynamic changes in GH receptors which may correspond to changes in metabolic responses to GH. Structural properties of the GH receptor will be examined by cross-linking techniques, by use of monoclonal antibodies to the GH receptor, and by newly developed methods which increase the refinement in the analysis of GH structure. We shall attempt to purify the GH receptor, and to determine whether it is phosphorylated or has protein kinase activity. In this way, we shall evaluate the relationship between the effects of GH and binding of GH to receptors on adipocytes and the effects in metabolic and growth regulation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK034171-04
Application #
3232521
Study Section
Endocrinology Study Section (END)
Project Start
1984-08-01
Project End
1988-11-30
Budget Start
1987-08-01
Budget End
1988-11-30
Support Year
4
Fiscal Year
1987
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
Schools of Medicine
DUNS #
791277940
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
O'Leary, Erin E; Mazurkiewicz-Muñoz, Anna M; Argetsinger, Lawrence S et al. (2013) Identification of steroid-sensitive gene-1/Ccdc80 as a JAK2-binding protein. Mol Endocrinol 27:619-34
Ray, Bridgette N; Kweon, Hye Kyong; Argetsinger, Lawrence S et al. (2012) Research resource: identification of novel growth hormone-regulated phosphorylation sites by quantitative phosphoproteomics. Mol Endocrinol 26:1056-73
Maures, Travis J; Su, Hsiao-Wen; Argetsinger, Lawrence S et al. (2011) Phosphorylation controls a dual-function polybasic nuclear localization sequence in the adapter protein SH2B1? to regulate its cellular function and distribution. J Cell Sci 124:1542-52
Cui, Tracy X; Lin, Grace; LaPensee, Christopher R et al. (2011) C/EBP? mediates growth hormone-regulated expression of multiple target genes. Mol Endocrinol 25:681-93
Argetsinger, Lawrence S; Stuckey, Jeanne A; Robertson, Scott A et al. (2010) Tyrosines 868, 966, and 972 in the kinase domain of JAK2 are autophosphorylated and required for maximal JAK2 kinase activity. Mol Endocrinol 24:1062-76
Robertson, Scott A; Koleva, Rositsa I; Argetsinger, Lawrence S et al. (2009) Regulation of Jak2 function by phosphorylation of Tyr317 and Tyr637 during cytokine signaling. Mol Cell Biol 29:3367-78
Thompson, Brian R; Mazurkiewicz-Muñoz, Anna M; Suttles, Jill et al. (2009) Interaction of adipocyte fatty acid-binding protein (AFABP) and JAK2: AFABP/aP2 as a regulator of JAK2 signaling. J Biol Chem 284:13473-80
Jin, Hui; Lanning, Nathan J; Carter-Su, Christin (2008) JAK2, but not Src family kinases, is required for STAT, ERK, and Akt signaling in response to growth hormone in preadipocytes and hepatoma cells. Mol Endocrinol 22:1825-41
Li, Zhiqin; Zhou, Yingjiang; Carter-Su, Christin et al. (2007) SH2B1 enhances leptin signaling by both Janus kinase 2 Tyr813 phosphorylation-dependent and -independent mechanisms. Mol Endocrinol 21:2270-81
Kurzer, Jason H; Saharinen, Pipsa; Silvennoinen, Olli et al. (2006) Binding of SH2-B family members within a potential negative regulatory region maintains JAK2 in an active state. Mol Cell Biol 26:6381-94

Showing the most recent 10 out of 63 publications