This project is intended to provide fundamental information on the molecular mechanisms which control binding of oxygen and other ligands to hemoglobins. High resolution NMR methods will be used to investigate the heme pocket conformations and dynamics of several monomeric hemoglobins and myoglobins. These are the simplest proteins capable of reversible oxygenation and are excellent models for understanding the structural basis for control of ligand binding by tetrameric vertebrate hemoglobins. Tetrameric hemoglobins are not amenable to such a comprehensive NMR analysis as proposed in this project. The project will comprise a systematic investigation and comparison of a series of monomeric hemoglobins and myoglobins which vary widely in their oxygen affinities (or more importantly, in the kinetics of their oxygen association and dissociation reactions). A detailed description of the conformations, structural fluctuations and side chain dynamics of these proteins will be sought. Comparative information on the structure and dynamics of the heme pockets and ligand access channels is of particular importance. Attention will be focused on diamagnetic complexes. Two dimensional NMR techniques will be used extensively. Studies of conformation will be based on measurements of ring current shifts, nuclear Overhauser effects and coupling constants. Amide proton exchange rates and nuclear relaxation rates (primarily 13C) will provide information on protein structural fluctuations and side chain dynamics.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK034909-03
Application #
3233168
Study Section
Metallobiochemistry Study Section (BMT)
Project Start
1984-12-01
Project End
1988-06-30
Budget Start
1986-12-01
Budget End
1988-06-30
Support Year
3
Fiscal Year
1987
Total Cost
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
City
San Diego
State
CA
Country
United States
Zip Code
92037
Sun, Xun; Jaeger, Marcus; Kelly, Jeffery W et al. (2018) Mispacking of the Phe87 side chain reduces the kinetic stability of human transthyretin. Biochemistry :
Sun, Xun; Dyson, H Jane; Wright, Peter E (2018) Kinetic analysis of the multistep aggregation pathway of human transthyretin. Proc Natl Acad Sci U S A 115:E6201-E6208
Leach, Benjamin I; Zhang, Xin; Kelly, Jeffery W et al. (2018) NMR Measurements Reveal the Structural Basis of Transthyretin Destabilization by Pathogenic Mutations. Biochemistry 57:4421-4430
Sun, Xun; Dyson, H Jane; Wright, Peter E (2017) Fluorotryptophan Incorporation Modulates the Structure and Stability of Transthyretin in a Site-Specific Manner. Biochemistry 56:5570-5581
Dyson, H Jane; Wright, Peter E (2017) How Does Your Protein Fold? Elucidating the Apomyoglobin Folding Pathway. Acc Chem Res 50:105-111
Lim, Kwang Hun; Dasari, Anvesh K R; Hung, Ivan et al. (2016) Solid-State NMR Studies Reveal Native-like ?-Sheet Structures in Transthyretin Amyloid. Biochemistry 55:5272-8
Aoto, Phillip C; Nishimura, Chiaki; Dyson, H Jane et al. (2014) Probing the non-native H helix translocation in apomyoglobin folding intermediates. Biochemistry 53:3767-80
Li, Xinyi; Zhang, Xin; Ladiwala, Ali Reza A et al. (2013) Mechanisms of transthyretin inhibition of ?-amyloid aggregation in vitro. J Neurosci 33:19423-33
Lim, Kwang Hun; Dyson, H Jane; Kelly, Jeffery W et al. (2013) Localized structural fluctuations promote amyloidogenic conformations in transthyretin. J Mol Biol 425:977-88
Nishimura, Chiaki; Dyson, H Jane; Wright, Peter E (2011) Consequences of stabilizing the natively disordered f helix for the folding pathway of apomyoglobin. J Mol Biol 411:248-63

Showing the most recent 10 out of 50 publications