Urothelium is a 3-4 layered cellular structure that lines the urinary space (renal pelvis, ureter, bladder and urethra). Abnormality in this epithelium can lead to a number of urogenital diseases including bladder cancer that accounts for about 5% of all cancer deaths. To control and eventually to prevent some of these abnormalities, we need to understand the biochemistry of urothelial differentiation, which is the long-term goal of this project. During the current grant period, we will conduct two series of experiments. In the first, we will grow cow urothelial cells in culture, and use them as a model for studying an """"""""altered"""""""" state of urothelial differentiation. In another series of experiments, we will characterize a panel of urothelial differentiation antigens, with an emphasis on the so-called """"""""asymmetric unit membrane (AUM)"""""""" which is a bladder-specific structure believed to play an essential role in maintaining the """"""""stretchability"""""""" of normal urothelium. To identify the AUM subunits, we will use four approaches which are based on different but complementary principles. They are monoclonal antibody production, iodination of urothelial surface molecules, identification of cytoskeletal binding proteins, and two- dimensional gel analysis. Immunological and nucleic acid probes for these urothelial markers will be generated and used to study the structure and function of these molecules.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
1R01DK039753-01
Application #
3239693
Study Section
Diabetes and Digestive and Kidney Diseases Special Grants Review Committee (DDK)
Project Start
1987-09-30
Project End
1990-08-31
Budget Start
1987-09-30
Budget End
1988-08-31
Support Year
1
Fiscal Year
1987
Total Cost
Indirect Cost
Name
New York University
Department
Type
Schools of Medicine
DUNS #
004514360
City
New York
State
NY
Country
United States
Zip Code
10012
Chicote, Javier U; DeSalle, Rob; Segarra, José et al. (2017) The Tetraspanin-Associated Uroplakins Family (UPK2/3) Is Evolutionarily Related to PTPRQ, a Phosphotyrosine Phosphatase Receptor. PLoS One 12:e0170196
Wankel, Bret; Ouyang, Jiangyong; Guo, Xuemei et al. (2016) Sequential and compartmentalized action of Rabs, SNAREs, and MAL in the apical delivery of fusiform vesicles in urothelial umbrella cells. Mol Biol Cell 27:1621-34
Schaffer, Jessica N; Norsworthy, Allison N; Sun, Tung-Tien et al. (2016) Proteus mirabilis fimbriae- and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation. Proc Natl Acad Sci U S A 113:4494-9
Kisiela, Dagmara I; Avagyan, Hovhannes; Friend, Della et al. (2015) Inhibition and Reversal of Microbial Attachment by an Antibody with Parasteric Activity against the FimH Adhesin of Uropathogenic E. coli. PLoS Pathog 11:e1004857
Liu, Yan; Mémet, Sylvie; Saban, Ricardo et al. (2015) Dual ligand/receptor interactions activate urothelial defenses against uropathogenic E. coli. Sci Rep 5:16234
Hickling, Duane R; Sun, Tung-Tien; Wu, Xue-Ru (2015) Anatomy and Physiology of the Urinary Tract: Relation to Host Defense and Microbial Infection. Microbiol Spectr 3:
Vieira, Neide; Deng, Fang-Ming; Liang, Feng-Xia et al. (2014) SNX31: a novel sorting nexin associated with the uroplakin-degrading multivesicular bodies in terminally differentiated urothelial cells. PLoS One 9:e99644
Desalle, Rob; Chicote, Javier U; Sun, Tung-Tien et al. (2014) Generation of divergent uroplakin tetraspanins and their partners during vertebrate evolution: identification of novel uroplakins. BMC Evol Biol 14:13
Mathai, John C; Zhou, Enhua H; Yu, Weiqun et al. (2014) Hypercompliant apical membranes of bladder umbrella cells. Biophys J 107:1273-9
Gandhi, Devangini; Molotkov, Andrei; Batourina, Ekatherina et al. (2013) Retinoid signaling in progenitors controls specification and regeneration of the urothelium. Dev Cell 26:469-482

Showing the most recent 10 out of 82 publications