Mammals have two known B12-dependent enzymes that conduct essential housekeeping functions: methionine synthase and methylmalonyl-CoA mutase. Impairments in methionine synthase lead to megaloblastic anemia and hyperhomocysteinemia, the latter being a graded risk factor for atherosclerotic cardiovascular diseases. Dysfunction of methylmalonyl-CoA mutase leads to methylmalonic aciduria, leading to metabolic aberrations that can be fatal. This proposal focuses on elucidating the reaction mechanisms of these two enzymes, as well as the mechanism by which the cofactor regulates the activity of methionine synthase. Chemically, B12 is a novel cofactor, and catalyzes distinct biochemical transformations in association with these two enzymes. Thus, methionine synthase catalyzes a displacement reaction in which the cobalt-carbon bond of B12 breaks heterolytically, while the mutase catalyzes a rearrangement reaction in which the cobalt-carbon bond breaks homolytically. A combination of spectroscopic, kinetic and molecular genetic techniques will be used to explore the mechanisms of these reactions, and to map and characterize the mutations in patients with inborn errors affecting these enzymes. The redox-active proteins that activate mammalian methionine synthase under physiological conditions will be identified and characterized, as these represent additional targets for mutations that could lead to hyperhomocysteinemia. The level at which B12 exerts control over methionine synthase and causes the observed induction in enzyme activity when presented to cells in culture will also be examined. These studies on the native and mutant B12 enzymes will make inroads into our understanding of novel reaction mechanisms of clinically important enzymes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK045776-07
Application #
2872206
Study Section
Physical Biochemistry Study Section (PB)
Program Officer
Laughlin, Maren R
Project Start
1993-02-01
Project End
2003-01-31
Budget Start
1999-02-15
Budget End
2000-01-31
Support Year
7
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Nebraska Lincoln
Department
Biochemistry
Type
Schools of Earth Sciences/Natur
DUNS #
555456995
City
Lincoln
State
NE
Country
United States
Zip Code
68588
Banerjee, Ruma (2018) Introduction to the Thematic Minireview Series: Redox metabolism and signaling. J Biol Chem 293:7488-7489
Ruetz, Markus; Shanmuganathan, Aranganathan; Gherasim, Carmen et al. (2017) Antivitamin B12 Inhibition of the Human B12 -Processing Enzyme CblC: Crystal Structure of an Inactive Ternary Complex with Glutathione as the Cosubstrate. Angew Chem Int Ed Engl 56:7387-7392
Li, Zhu; Kitanishi, Kenichi; Twahir, Umar T et al. (2017) Cofactor Editing by the G-protein Metallochaperone Domain Regulates the Radical B12 Enzyme IcmF. J Biol Chem 292:3977-3987
Campanello, Gregory C; Lofgren, Michael; Yokom, Adam L et al. (2017) Switch I-dependent allosteric signaling in a G-protein chaperone-B12 enzyme complex. J Biol Chem 292:17617-17625
Li, Zhu; Shanmuganathan, Aranganathan; Ruetz, Markus et al. (2017) Coordination chemistry controls the thiol oxidase activity of the B12-trafficking protein CblC. J Biol Chem 292:9733-9744
Shen, Hongying; Campanello, Gregory C; Flicker, Daniel et al. (2017) The Human Knockout Gene CLYBL Connects Itaconate to Vitamin B12. Cell 171:771-782.e11
Banerjee, Ruma (2017) Introduction to the Thematic Minireview Series: Redox metabolism and signaling. J Biol Chem 292:16802-16803
Banerjee, Ruma (2017) Introduction to the Thematic Minireview Series: Host-microbiome metabolic interplay. J Biol Chem 292:8544-8545
Banerjee, Ruma (2016) Introduction to the Thematic Minireview Series on Intrinsically Disordered Proteins. J Biol Chem 291:6679-80
Gherasim, Carmen; Ruetz, Markus; Li, Zhu et al. (2015) Pathogenic mutations differentially affect the catalytic activities of the human B12-processing chaperone CblC and increase futile redox cycling. J Biol Chem 290:11393-402

Showing the most recent 10 out of 38 publications