The aim of this work is to understand the functional and structural properties of an inactivation form of a large-conductance calcium (Ca2+)- and voltage-activated potassium (K+) channel (termed BK channel). BK channels play a critical role in coupling changes in submembrane Ca2+ concentrations to changes in membrane potential and excitability. BK currents among different cells exhibit markedly different apparent Ca2+ sensitivities and much of the functional diversity remains to be explained. In contrast to most previously described BK channels, most BK channels in rat chromaffin cells exhibit rapid inactivation (BKi). BKi channels are also found in the pancreas and hippocampus. The mechanism of inactivation appears to differ from mechanisms proposed for other voltage-gated channels. Using methods of electrophysiology combined with molecular biology and biochemistry, this project will define a likely inactivation mechanism and attempt to define the composition of BKi channels. First, the possible locations of barriers to ion permeation that occur during inactivation will be determined. Second, the extent to which inactivation is coupled to conformational changes associated with channel opening will be determined. Third, possible key structural components of BKi channels will be examined. Finally, the distribution and function of BKi channels in other tissues will be determined. This project will provide new information about a mechanistically unique form of channel inactivation. Furthermore, new information will be gained about possible structural changes associated with BK gating. In different tissues, BK channels contribute to regulation of neuronal excitability, smooth muscle relaxation, and hormone secretion. The BK channel is therefore of potential medical importance, not only because it may serve as an important therapeutic target but also altered function of this channel may contribute to pathological conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK046564-08
Application #
6342464
Study Section
Physiology Study Section (PHY)
Program Officer
Abraham, Kristin M
Project Start
1993-05-21
Project End
2001-12-31
Budget Start
2001-01-01
Budget End
2001-12-31
Support Year
8
Fiscal Year
2001
Total Cost
$226,919
Indirect Cost
Name
Washington University
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
062761671
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Zeng, Xu-Hui; Benzinger, G Richard; Xia, Xiao-Ming et al. (2007) BK channels with beta3a subunits generate use-dependent slow afterhyperpolarizing currents by an inactivation-coupled mechanism. J Neurosci 27:4707-15
Zhang, Zhe; Zhou, Yu; Ding, Jiu-Ping et al. (2006) A limited access compartment between the pore domain and cytosolic domain of the BK channel. J Neurosci 26:11833-43
Benzinger, G Richard; Xia, Xiao-Ming; Lingle, Christopher J (2006) Direct observation of a preinactivated, open state in BK channels with beta2 subunits. J Gen Physiol 127:119-31
Chen, Xiao-Ke; Wang, Lie-Cheng; Zhou, Yang et al. (2005) Activation of GPCRs modulates quantal size in chromaffin cells through G(betagamma) and PKC. Nat Neurosci 8:1160-8
Xia, Xiao-Ming; Ding, J P; Lingle, Christopher J (2003) Inactivation of BK channels by the NH2 terminus of the beta2 auxiliary subunit: an essential role of a terminal peptide segment of three hydrophobic residues. J Gen Physiol 121:125-48
Wang, Ying-Wei; Ding, Jiu Ping; Xia, Xiao-Ming et al. (2002) Consequences of the stoichiometry of Slo1 alpha and auxiliary beta subunits on functional properties of large-conductance Ca2+-activated K+ channels. J Neurosci 22:1550-61
Ding, Jiu Ping; Lingle, Christopher J (2002) Steady-state and closed-state inactivation properties of inactivating BK channels. Biophys J 82:2448-65
Zhang, X; Solaro, C R; Lingle, C J (2001) Allosteric regulation of BK channel gating by Ca(2+) and Mg(2+) through a nonselective, low affinity divalent cation site. J Gen Physiol 118:607-36
Zeng, X H; Ding, J P; Xia, X M et al. (2001) Gating properties conferred on BK channels by the beta3b auxiliary subunit in the absence of its NH(2)- and COOH termini. J Gen Physiol 117:607-28
Lingle, C J; Zeng, X H; Ding, J P et al. (2001) Inactivation of BK channels mediated by the NH(2) terminus of the beta3b auxiliary subunit involves a two-step mechanism: possible separation of binding and blockade. J Gen Physiol 117:583-606

Showing the most recent 10 out of 19 publications