Diabetes is a disease of epidemic proportion. Glucose homeostasis and peripheral tissue glucose disposal are disrupted in diabetics. GLUT4 plays a central role in normal maintenance of insulin stimulated glucose uptake in muscle and adipose tissue. By disrupting the GLUT4 gene we generated a novel model to study glucose homeostasis. GLUT4 null mice have normal glucose tolerance but have peripheral insulin resistance without diabetes. In vitro and in vivo assays have identified an insulin sensitive glucose transport activity (GLUTx) in highly oxidative muscle and brown fat that may compensate for ablation of GLUT4 and is enhanced under hyperglycemic clamp conditions suggesting it is a low affinity transporter/sensor. A putative cDNA encoding GLUTx has been isolated which has sequences in common with facilitative glucose transporters and glucose sensors/receptors. We hypothesize that expression/activation of GLUTx and enhanced muscular oxidative capacity help enable GLUT4 null mice to resist becoming diabetic. GLUTx may be upstream of AMP-activated protein kinase (AMPK) which senses metabolic stress. Thiazolidinediones (TZDs) improve glucose homeostasis by an insulin sensitizing action. Muscles from TZD-treated subjects, like those of GLUT4 null mice, display increased glucose oxidation and reduced glycogen storage. This may suggest altered glucose partitioning in TZD muscle may be due to improved flux through a GLUTx-mediated (non-GLUT4) pathway and/or alterations in the glycogen scaffold protein PTG1. We also hypothesize that TZDs activate signaling mechanisms similar to those with GLUT4 ablation which increase glucose uptake and oxidation possibly through GLUTx and AMPK. As with GLUT4 null muscle, further increases in glucose oxidation may be seen in TZD-treated muscle under hyperglycemic clamp conditions. These hypotheses will be tested in GLUT4 null and wild type mice following TZD treatment. By understanding alterations in signaling, glucose partitioning, and expression of GLUTx and PTG1 in wild type and GLUT4 null muscle of these mice under euglycemic and hyperglycemic conditions we may identify novel targets for therapeutics for type II diabetes and other diseases of insulin resistance.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
2R01DK047425-04A1
Application #
2858563
Study Section
Endocrinology Study Section (END)
Program Officer
Haft, Carol R
Project Start
1995-08-01
Project End
2003-03-31
Budget Start
1999-05-01
Budget End
2000-03-31
Support Year
4
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Biochemistry
Type
Schools of Medicine
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Charron, Maureen J; Vuguin, Patricia M (2015) Lack of glucagon receptor signaling and its implications beyond glucose homeostasis. J Endocrinol 224:R123-30
Vuguin, P M; Charron, M J (2011) Novel insight into glucagon receptor action: lessons from knockout and transgenic mouse models. Diabetes Obes Metab 13 Suppl 1:144-50
Hartil, Kirsten; Vuguin, Patricia M; Kruse, Michael et al. (2009) Maternal substrate utilization programs the development of the metabolic syndrome in male mice exposed to high fat in utero. Pediatr Res 66:368-73
Gelling, Richard W; Vuguin, Patricia M; Du, Xiu Quan et al. (2009) Pancreatic beta-cell overexpression of the glucagon receptor gene results in enhanced beta-cell function and mass. Am J Physiol Endocrinol Metab 297:E695-707
Sinclair, Elaine M; Yusta, Bernardo; Streutker, Catherine et al. (2008) Glucagon receptor signaling is essential for control of murine hepatocyte survival. Gastroenterology 135:2096-106
Longuet, Christine; Sinclair, Elaine M; Maida, Adriano et al. (2008) The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab 8:359-71
Kedees, Mamdouh H; Guz, Yelena; Vuguin, Patricia M et al. (2007) Nestin expression in pancreatic endocrine and exocrine cells of mice lacking glucagon signaling. Dev Dyn 236:1126-33
Ranalletta, Mollie; Du, Xiu Quan; Seki, Yoshinori et al. (2007) Hepatic response to restoration of GLUT4 in skeletal muscle of GLUT4 null mice. Am J Physiol Endocrinol Metab 293:E1178-87
Piroli, Gerardo G; Grillo, Claudia A; Reznikov, Leah R et al. (2007) Corticosterone impairs insulin-stimulated translocation of GLUT4 in the rat hippocampus. Neuroendocrinology 85:71-80
Fueger, Patrick T; Li, Candice Y; Ayala, Julio E et al. (2007) Glucose kinetics and exercise tolerance in mice lacking the GLUT4 glucose transporter. J Physiol 582:801-12

Showing the most recent 10 out of 49 publications