Cilia are microtubule based organelles found on most cells in the mammalian body. Until recently, cilia were thought to be relatively unimportant for normal health;however, studies in humans, mice, and model organisms have demonstrated that defects in cilia signaling or assembly cause severe disease pathologies called ciliopathies. In the kidney, ciliary dysfunction results in renal failure due to the formation of large cysts. In part this is due to loss of function of the polycystins, proteins involved in human polycystic kidney disease (PKD), which localize to cilia and are required for the mechanosensory role of cilia. Unexpectedly, inducible loss of cilia in the kidney of mice revealed the severity of the cystic pathology is influenced by when cilia function is disrupted. If cilia loss occurs during late gestation cysts develop very rapidly. In contrast, induction of cilia loss in adults does not result in cysts until a year after they are disrupted. However, once they begin to form in the adults they progress rapidly. Based on this observation, the initial goal of this proposal is to dissect the molecular and cellular basis behind the delay in cyst formation and the switch to rapid cyst expansion later in adult life. The effect of cilia dysfunction on cell proliferation, cell death, and the activity of signaling pathways affected in cystic kidney disease are being explored. In addition to the loss of cilia, there are several mouse models where kidney cysts develop with cilia that are either too long or too short, suggesting that cilia length may also be important. Thus, the goal of the second aim is to evaluate how cells control cilia length. As part of this analysis, the effect of excessively long cilia on signaling activity and on coordinating the levels of intracellular signaling molecules associated with cyst development will be determined. Finally, there are several proteins associated with human cystic kidney disorders, such as nephronophthisis and Meckel syndrome, which localize to the basal body, a structure at the base of cilia from which cilia assemble. Importantly, these basal body proteins are highly conserved and also localize to the base of cilia in organisms such as C. elegans. As seen in humans, mutations in these genes in C. elegans did not alter cilia morphology. However, these mutants exhibit behavioral phenotypes indicating that cilia mediate signaling activity is impaired. Thus, the third aim is to utilize C. elegans as a model system to explore the role of these proteins in the basal body signaling complex that is required for normal cilia signaling. Finally, C. elegans will be used to identify mutations that modify the behavioral phenotype of one of the basal body mutant proteins. This will allow the identification of novel proteins which function as part of the basal body signaling complex. Overall, these data will lead to a better understanding of how mutations affecting cilia and basal body signaling activity contribute to ciliopathies such as cystic kidney diseases. Project Narrative Mutations in several proteins which localize to cilia or the basal body at the base of cilia result in severe pathologies referred to as ciliopathies;however, the function of most of these proteins and the signaling pathways affected remain unresolved. Thus, the objectives of the proposal are to explore the cellular and molecular mechanisms involved in disease pathogenesis caused by disruption of cilia signaling activity, to understand how cilia generated signals are regulated, and to identify novel components that function in the cilia/basal body signaling pathways. These data will provide important and novel insights into how disruption of cilia and basal body signaling can cause human disorders such as cystic kidney disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK065655-07
Application #
7905171
Study Section
Cellular and Molecular Biology of the Kidney Study Section (CMBK)
Program Officer
Rasooly, Rebekah S
Project Start
2004-02-01
Project End
2012-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
7
Fiscal Year
2010
Total Cost
$346,370
Indirect Cost
Name
University of Alabama Birmingham
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Lewis, Wesley R; Malarkey, Erik B; Tritschler, Douglas et al. (2016) Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease. PLoS Genet 12:e1006220
Masyukova, Svetlana V; Landis, Dawn E; Henke, Scott J et al. (2016) A Screen for Modifiers of Cilia Phenotypes Reveals Novel MKS Alleles and Uncovers a Specific Genetic Interaction between osm-3 and nphp-4. PLoS Genet 12:e1005841
Pasek, Raymond C; Malarkey, Erik; Berbari, Nicolas F et al. (2016) Coiled-coil domain containing 42 (Ccdc42) is necessary for proper sperm development and male fertility in the mouse. Dev Biol 412:208-18
Sanders, Anna A W M; de Vrieze, Erik; Alazami, Anas M et al. (2015) KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome. Genome Biol 16:293
Zimmerman, Kurt; Yoder, Bradley K (2015) SnapShot: Sensing and Signaling by Cilia. Cell 161:692-692.e1
Gilley, Sandra K; Stenbit, Antine E; Pasek, Raymond C et al. (2014) Deletion of airway cilia results in noninflammatory bronchiectasis and hyperreactive airways. Am J Physiol Lung Cell Mol Physiol 306:L162-9
Berbari, Nicolas F; Malarkey, Erik B; Yazdi, S M Zaki R et al. (2014) Hippocampal and cortical primary cilia are required for aversive memory in mice. PLoS One 9:e106576
Vijayakumar, Soundarapandian; Dang, Suparna; Marinkovich, M Peter et al. (2014) Aberrant expression of laminin-332 promotes cell proliferation and cyst growth in ARPKD. Am J Physiol Renal Physiol 306:F640-54
Thomas, Holly R; Percival, Stefanie M; Yoder, Bradley K et al. (2014) High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis. PLoS One 9:e114632
O'Connor, Amber K; Malarkey, Erik B; Berbari, Nicolas F et al. (2013) An inducible CiliaGFP mouse model for in vivo visualization and analysis of cilia in live tissue. Cilia 2:8

Showing the most recent 10 out of 46 publications