Metabolic homeostasis plays a central role in all aspects of life, allowing animals to balance their dietary intake with the energy needs required for day-to-day survival. Conversely, mis-regulation of metabolism can lead to obesity and type 2 diabetes, which are critical risk factors for human disease, including cardiovascular disorders and cancer. Our research exploits the speed and power of Drosophila genetics to identify and characterize key aspects of metabolic control with the goal of identifying new levels of regulation that are conserved through evolution, from flies to humans. The molecular context for our studies are nuclear receptors (NRs), which are ligand-regulated transcription factors that play a central role in maintaining metabolic homeostasis. Drosophila has 18 NR genes, significantly fewer than the 48 genes found in humans, spanning all vertebrate NR subfamilies and encoding homologs of key human receptors, including HNF4 (dHNF4), LXR (DHR96), NR4A receptors (DHR38), TR2/TR4 receptors (DHR78), and ERR (dERR). This provides a simplified context for functional studies of NR signaling pathways, allowing us to use Drosophila to define the ancestral roles of evolutionarily-conserved NR subclasses in the absence of genetic redundancy. Over the past four years of NIDDK support our studies of dHNF4, DHR96, DHR78, and dERR, have demonstrated that their fundamental activities have been conserved through evolution, and have revealed new insights into the regulation and function of their mammalian counterparts. In this renewal application, we propose two specific aims that continue our studies of Drosophila NRs with a focus on lipid metabolic pathways.
These aims build off recent studies in our lab that identified new activities for the Drosophila members of the ERR and TR2/TR4 NR subfamilies.
In aim 1, we will test the hypothesis that dERR supports lipid uptake, transport, and/or storage in adults, analogous to the role of ERR? in the intestine and adipose tissue.
In aim 2, we will test the hypothesis that DHR78 plays a central role in lipid metabolism and mitochondrial activity that supports female fertility and suppresses neurodegeneration. By combining metabolite measurements, metabolomic profiling, RNA-seq, ChIP-seq, tissue-specific rescue experiments, RNAi studies, functional characterization of select target genes, and ligand regulation of the receptor, we will define the mechanisms of NR signaling at a level of resolution that is difficult to achieve in more complex organisms. These advances, in turn, will improve our design of mouse models for future functional studies, harness the power of model organism genetics to understand the factors that contribute to diabetes and obesity, and facilitate the development of therapeutic approaches to treat metabolic dysfunction.

Public Health Relevance

Our studies use Drosophila as a simple model system to define the molecular mechanisms of nuclear receptor action that are conserved through evolution, from flies to humans. This work will have an impact on understanding how nuclear receptors maintain metabolic homeostasis and provide new directions for combating critical human diseases associated with nuclear receptor dysfunction, including cardiovascular disease, diabetes, and obesity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK075607-13
Application #
9509231
Study Section
Molecular and Cellular Endocrinology Study Section (MCE)
Program Officer
Silva, Corinne M
Project Start
2006-07-01
Project End
2020-05-31
Budget Start
2018-06-01
Budget End
2019-05-31
Support Year
13
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Utah
Department
Genetics
Type
Schools of Medicine
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Marxreiter, Stefanie; Thummel, Carl S (2018) Adult functions for the Drosophila DHR78 nuclear receptor. Dev Dyn 247:315-322
Cox, James E; Thummel, Carl S; Tennessen, Jason M (2017) Metabolomic Studies in Drosophila. Genetics 206:1169-1185
Praggastis, Sophia A; Thummel, Carl S (2017) Right time, right place: the temporal regulation of developmental gene expression. Genes Dev 31:847-848
Palu, Rebecca A S; Thummel, Carl S (2016) Sir2 Acts through Hepatocyte Nuclear Factor 4 to maintain insulin Signaling and Metabolic Homeostasis in Drosophila. PLoS Genet 12:e1005978
Barry, William E; Thummel, Carl S (2016) The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults. Elife 5:
Palu, Rebecca A S; Thummel, Carl S (2015) Linking Nutrients to Growth through a Positive Feedback Loop. Dev Cell 35:265-6
Marxreiter, Stefanie; Thummel, Carl S (2014) Will branch for food-nutrient-dependent tracheal remodeling in Drosophila. EMBO J 33:179-80
Tennessen, Jason M; Barry, William E; Cox, James et al. (2014) Methods for studying metabolism in Drosophila. Methods 68:105-15
Tennessen, Jason M; Bertagnolli, Nicolas M; Evans, Janelle et al. (2014) Coordinated metabolic transitions during Drosophila embryogenesis and the onset of aerobic glycolysis. G3 (Bethesda) 4:839-50
Sieber, Matthew H; Thummel, Carl S (2012) Coordination of triacylglycerol and cholesterol homeostasis by DHR96 and the Drosophila LipA homolog magro. Cell Metab 15:122-7

Showing the most recent 10 out of 25 publications