Progression of type 2 diabetes mellitus tracks with the failure of pancreatic beta cells to compensate for peripheral insulin resistance. Loss of glucose sensitivity, particularly during the sharp rise in blood glucose that follows a meal, is strongly associated with peripheral tissue damage during diabetes. Yet the molecular mechanisms underlying defects in beta-cell glucose sensing during type 2 diabetes are not well understood. This proposal seeks critical information regarding the regulation of glucokinase, which is the glucose sensing protein in insulin-secreting beta cells. Work in the previous funding period focused on hormonal activation of glucokinase through chemical reaction with nitric oxide. These studies revealed important new connections between defects in glucokinase regulation and a genetic form of human diabetes. Even so, major questions remain concerning the mechanism of glucokinase activation and the impact of diabetes-related cell stress on glucokinase function.
Three aims are proposed.
Aim 1 will utilize a newly developed glucokinase biosensor to reveal the connection between cellular activation by nitric oxide and the underlying biochemical states suggested by its molecular structure.
Aim 2 will focus on understanding the molecular mechanism that leads to glucokinase association with nitric oxide synthase, which is a critical interaction required for cellular activation of glucokinase. Experiments in this aim wil also reveal whether defects in glucokinase regulation may explain the association of NOS1AP gene mutations with human diabetes.
Aim 3 will focus on the impact of diabetes-related cell stress on glucokinase activation. Our preliminary data show that impaired endoplasmic reticulum function disrupts glucokinase regulation. The planned studies seek to identify the mechanism behind this disruption, and test whether diet-related obesity can similarly disrupt glucokinase regulation. If so, these studies will provide a molecular explanation for inhibited glucose sensing during type 2 diabetes. In summary, these studies have the potential to unify cellular and biochemical models of glucokinase function, identify new molecular regulators of glucokinase activity, and will lead to new ideas about the molecular causes underlying the deficit in ?-cell glucose sensing observed in type 2 diabetes mellitus. Understanding the molecular events that worsen type 2 diabetes mellitus is vital for designing new therapies that target beta-cell glucose sensing.

Public Health Relevance

The glucose sensing protein, glucokinase, is activated through reaction with nitric oxide. This mechanism is important to glucose sensing in insulin secreting cells, and the proposed work seeks to understand the molecular details that lead to enhanced glucose sensitivity. Further, we will explore the impact of diabetic stress on the ability of this molecular mechanism to properly function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
2R01DK077140-06A1
Application #
8760759
Study Section
Molecular and Cellular Endocrinology Study Section (MCE)
Program Officer
Sato, Sheryl M
Project Start
2006-12-01
Project End
2019-06-30
Budget Start
2014-09-01
Budget End
2015-06-30
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Maryland Baltimore
Department
Physiology
Type
Schools of Medicine
DUNS #
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Seckinger, Kendra M; Rao, Vishnu P; Snell, Nicole E et al. (2018) Nitric Oxide Activates ?-Cell Glucokinase by Promoting Formation of the ""Glucose-Activated"" State. Biochemistry 57:5136-5144
Markwardt, Michele L; Snell, Nicole E; Guo, Min et al. (2018) A Genetically Encoded Biosensor Strategy for Quantifying Non-muscle Myosin II Phosphorylation Dynamics in Living Cells and Organisms. Cell Rep 24:1060-1070.e4
Snell, Nicole E; Rao, Vishnu P; Seckinger, Kendra M et al. (2018) Homotransfer of FRET Reporters for Live Cell Imaging. Biosensors (Basel) 8:
Ross, Brian L; Tenner, Brian; Markwardt, Michele L et al. (2018) Single-color, ratiometric biosensors for detecting signaling activities in live cells. Elife 7:
Desmond, Patrick F; Labuza, Amanda; Muriel, Joaquin et al. (2017) Interactions between small ankyrin 1 and sarcolipin coordinately regulate activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1). J Biol Chem 292:10961-10972
Markwardt, Michele L; Seckinger, Kendra M; Rizzo, Mark A (2016) Regulation of Glucokinase by Intracellular Calcium Levels in Pancreatic ? Cells. J Biol Chem 291:3000-9
Rizzo, Mark A (2016) Emptying the Pool: Modular Insulin Secretion From the Pancreas. Diabetes 65:542-4
Desmond, Patrick F; Muriel, Joaquin; Markwardt, Michele L et al. (2015) Identification of Small Ankyrin 1 as a Novel Sarco(endo)plasmic Reticulum Ca2+-ATPase 1 (SERCA1) Regulatory Protein in Skeletal Muscle. J Biol Chem 290:27854-67
Costantini, Lindsey M; Baloban, Mikhail; Markwardt, Michele L et al. (2015) A palette of fluorescent proteins optimized for diverse cellular environments. Nat Commun 6:7670
Mauban, Joseph R H; Fairfax, Seth T; Rizzo, Mark A et al. (2014) A method for noninvasive longitudinal measurements of [Ca2+] in arterioles of hypertensive optical biosensor mice. Am J Physiol Heart Circ Physiol 307:H173-81

Showing the most recent 10 out of 19 publications