Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) provides a critical tool to the medical and scientific communities. Despite the indispensable role of the BOLD fMRI technique in mapping human brain function, MRI cannot be readily used to map sub‑millimeter functional structures such as cortical columns due to its relatively broad point spread function, which extends beyond the neuronally active area. It has been proposed, however, that a BOLD signal decrease, which precedes the positive BOLD signal change, can be used to improve the spatial specificity of fMRI. This early negative BOLD signal (sometimes referred to as the """"""""dip"""""""") is presumably induced by an early localized increase in oxygen consumption rate without a commensurate localized cerebral blood flow (CBF) increase. Recently, by using the early negative BOLD signal, mapping of functional columns in the cat visual cortex has been successfully achieved in our laboratory. However, the existence of the dip in other species is highly controversial. Further, the negative BOLD signal change observed so far is small and transient, thus its utility to columnar resolution fMRI is limited. Therefore, to fully utilize the dip for functional imaging, it is imperative to understand the biophysical and physiological sources of the early negative BOLD signal change. In this application, we aim to elucidate the origin of the early negative BOLD signal and determine the spatial specificity of fMRI techniques. This will be accomplished by using a well‑established feline orientation column model at an ultra‑high field of 9.4 Tesla. The hypotheses to be tested are: 1.) The source of the early negative BOLD signal change is an early oxygen consumption increase followed by a delayed CBF increase. 2.) The magnitude and dynamics of the early negative BOLD signal are heavily influenced by changes in CBF during increased neural activity. 3.) Columnar structures can be mapped using the CBF response as well as the early negative BOLD signal. The long‑term goal is to improve the spatial resolution of fMRI, so that it will ultimately yield the capability of mapping columnar structures in both animals and humans non‑invasively. Further insight into functional columnar organization in animals and humans will greatly facilitate our basic understanding of the structure, development and plasticity of cortical maps.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB003324-05
Application #
6824879
Study Section
Diagnostic Imaging Study Section (DMG)
Program Officer
Mclaughlin, Alan Charles
Project Start
2000-12-01
Project End
2006-03-31
Budget Start
2004-12-01
Budget End
2006-03-31
Support Year
5
Fiscal Year
2005
Total Cost
$295,206
Indirect Cost
Name
University of Pittsburgh
Department
Neurology
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Iordanova, Bistra; Vazquez, Alberto; Kozai, Takashi Dy et al. (2018) Optogenetic investigation of the variable neurovascular coupling along the interhemispheric circuits. J Cereb Blood Flow Metab 38:627-640
Vazquez, Alberto L; Fukuda, Mitsuhiro; Kim, Seong-Gi (2018) Inhibitory Neuron Activity Contributions to Hemodynamic Responses and Metabolic Load Examined Using an Inhibitory Optogenetic Mouse Model. Cereb Cortex 28:4105-4119
Jin, Tao; Iordanova, Bistra; Hitchens, T Kevin et al. (2018) Chemical exchange-sensitive spin-lock (CESL) MRI of glucose and analogs in brain tumors. Magn Reson Med 80:488-495
Jin, Tao; Mehrens, Hunter; Wang, Ping et al. (2018) Chemical exchange-sensitive spin-lock MRI of glucose analog 3-O-methyl-d-glucose in normal and ischemic brain. J Cereb Blood Flow Metab 38:869-880
Poplawsky, Alexander John; Fukuda, Mitsuhiro; Kang, Bok-Man et al. (2017) Dominance of layer-specific microvessel dilation in contrast-enhanced high-resolution fMRI: Comparison between hemodynamic spread and vascular architecture with CLARITY. Neuroimage :
Jin, Tao; Wang, Ping; Hitchens, T Kevin et al. (2017) Enhancing sensitivity of pH-weighted MRI with combination of amide and guanidyl CEST. Neuroimage 157:341-350
Lohani, S; Poplawsky, A J; Kim, S-G et al. (2017) Unexpected global impact of VTA dopamine neuron activation as measured by opto-fMRI. Mol Psychiatry 22:585-594
Poplawsky, Alexander John; Fukuda, Mitsuhiro; Kim, Seong-Gi (2017) Foundations of layer-specific fMRI and investigations of neurophysiological activity in the laminarized neocortex and olfactory bulb of animal models. Neuroimage :
Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E et al. (2016) Functional Connectivity of Resting Hemodynamic Signals in Submillimeter Orientation Columns of the Visual Cortex. Brain Connect :
Murphy, Matthew C; Poplawsky, Alexander J; Vazquez, Alberto L et al. (2016) Improved spatial accuracy of functional maps in the rat olfactory bulb using supervised machine learning approach. Neuroimage 137:1-8

Showing the most recent 10 out of 62 publications