The recent addition of a manganese (Mn)-containing antiknock compound methylcyclo-pentadienyl Mn tricarbonyl (MMT) to the US gasoline supply has raised a great concern about the health risks associated with a potential increase in the environmental levels of Mn. Both environmental and occupational exposures to (Mn) result in neurodegenerative symptoms resembling Parkinson's disease. However, the mechanisms underlying Mn neurotoxicity remain unknown. Our recent results show that in vivo and in vitro exposures to Mn alter both systemic and subcellular Fe status. While the former facilitates influx of Fe from the blood circulation to the cerebral spinal fluid (CSF), the latter promotes cellular Fe overload. We also found that accumulation of Mn in the choroid plexus, a tissue where blood-CSF barrier resides, enhances the density of transferrin receptor (TfR) mRNA, which has 3' binding IRE (iron responsive element) loops receptive to [4Fe-4S] cluster-containing iron regulatory protein-1 (IRP-1, or cytosolic aconitase). These findings have led us to propose that the mechanism by which Mn causes abnormal Fe metabolism is likely via its interaction with IRP-1 and the subsequent overexpression of TfR. The events, in turn, expedite Fe transport at the brain barrier systems and aggravate Fe accumulation in neuronal cells. Thus, we hypothesize in this proposal that accumulation of Mn in the choroid plexus alters Fe regulatory mechanisms in the blood-CSF barrier and thereby disturbs Fe homeostasis in the CSF, which may contribute to Mn-induced neurodegenerative Parkinsonism. Our research goals are to better understand the mechanism of Mn-induced Parkinsonism and in so doing identify and prevent environmental causes of neurodegenerative diseases.
Our specific aims are (1) to test the working hypothesis that Mn exposure alters the Fe regulatory mechanism in the choroid plexus, leading to a distorted Fe status in the CSF. We will define the dose and time response relationship of Mn exposure and Fe in CSF, blood, and choroid plexus, examine the activity of IRP-1, and determine the expression of TfR in blood-CSF barrier and selected brain areas; (2) to test the working hypothesis that Mn-facilitated transport of Fe at the blood-CSF barrier is directed toward the CSF and quantitatively is more significant than transport by the blood-brain barrier. We will use in vitro transport models to determine the direction and magnitude of Fe fluxes at two major brain barriers and to investigate if blocking of cellular trafficking of TfR antagonizes Mn-augmented unidirectional transport of Fe; and (3) to test the working hypothesis that alteration by Mn of cellular Fe regulation takes place at the level of mRNA expression, but not at the level of transcriptional modulation of genomic DNA. We will deterrnine the effect of Mn on RNA binding capability of IRP-1 and pertinent expression of TfR, examine if Mn inhibits degradation of TfR mRNA, and study cellular ferritin status in both barriers. In addition, we will study the effect of Mn on the RNA binding capability of a newly discovered IRP which regulates the synthesis of an [Fe-S] subunit of Complex-I.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES008146-08
Application #
6830697
Study Section
Alcohol and Toxicology Subcommittee 4 (ALTX)
Program Officer
Lawler, Cindy P
Project Start
1998-03-01
Project End
2005-11-30
Budget Start
2004-12-15
Budget End
2005-11-30
Support Year
8
Fiscal Year
2005
Total Cost
$302,749
Indirect Cost
Name
Purdue University
Department
Other Health Professions
Type
Schools of Public Health
DUNS #
072051394
City
West Lafayette
State
IN
Country
United States
Zip Code
47907
Rolle-McFarland, Danelle; Liu, Yingzi; Zhou, Jieqiong et al. (2018) Development of a Cumulative Exposure Index (CEI) for Manganese and Comparison with Bone Manganese and Other Biomarkers of Manganese Exposure. Int J Environ Res Public Health 15:
Bai, Jianwei; Han, Hua; Wang, Feng et al. (2017) Maternal linuron exposure alters testicular development in male offspring rats at the whole genome level. Toxicology 389:13-20
Sullivan, Brendan; Robison, Gregory; Osborn, Jenna et al. (2017) On the nature of the Cu-rich aggregates in brain astrocytes. Redox Biol 11:231-239
Fan, Ximin; Luo, Ying; Fan, Qiyuan et al. (2017) Reduced expression of PARK2 in manganese-exposed smelting workers. Neurotoxicology 62:258-264
Ding, Hongwei; Zheng, Wei; Han, Hua et al. (2017) Reproductive toxicity of linuron following gestational exposure in rats and underlying mechanisms. Toxicol Lett 266:49-55
Sullivan, Brendan; Robison, Gregory; Pushkar, Yulia et al. (2017) Copper accumulation in rodent brain astrocytes: A species difference. J Trace Elem Med Biol 39:6-13
Fu, Sherleen; Jiang, Wendy; Gao, Xiang et al. (2016) Aberrant Adult Neurogenesis in the Subventricular Zone-Rostral Migratory Stream-Olfactory Bulb System Following Subchronic Manganese Exposure. Toxicol Sci 150:347-68
Fan, Qiyuan; Zhou, Yan; Yu, Changyin et al. (2016) Cross-sectional study of expression of divalent metal transporter-1, transferrin, and hepcidin in blood of smelters who are occupationally exposed to manganese. PeerJ 4:e2413
(2016) From the Editor's Desk, Editor's Highlights, Letters to the Editor. Toxicol Sci 152:257-61
Fu, Sherleen; O'Neal, Stefanie; Hong, Lan et al. (2015) Elevated adult neurogenesis in brain subventricular zone following in vivo manganese exposure: roles of copper and DMT1. Toxicol Sci 143:482-98

Showing the most recent 10 out of 94 publications