There is considerable public and regulatory concern that developmental exposures to polychlorinated biphenyls (PCBs) cause significant cognitive and behavioral deficits in children, but assessing the risks posed by these compounds has been difficult because the biological mechanisms underlying PCB effects on the developing nervous system have yet to be identified. We have recently demonstrated that developmental exposure of rodents to a commercial PCB mixture impairs dendritic growth and plasticity in vivo coincident with deficits in spatial learning. These effects on neurodevelopment and cognitive function correlate with altered expression and function of ryanodine receptors (RyR) within the central nervous system. RyR regulate calcium-dependent signaling pathways that have been implicated in activity-dependent dendritic growth, which is a critical determinant of neuronal connectivity in the developing brain. The goal of our study is to characterize the mechanisms and structure-activity relationship (SAR) of PCB developmental neurotoxicity by testing the hypothesis that non-coplanar PCBs alter dendritic growth and plasticity by disrupting RyR function.
The specific aims are to: 1. Test the relative contributions of RyR perturbation and thyroid hormone deficits in PCB effects on dendritic growth and plasticity in vivo; 2. Use primary cultures of hippocampal neurons to identify the molecular mechanisms mediating PCB effects on dendritic growth; 3. Determine how non-coplanar PCBs alter the function and expression of proteins that comprise calcium release units in cultured hippocampal neurons; 4. Determine whether heritable mutations in ryr1 and ryr2 that increase sensitivity to halogenated compounds in the human population increase susceptibility to PCB developmental neurotoxicity in mice expressing these mutations. These studies address the critical need to better understand mechanisms underlying PCB developmental neurotoxicity. Results will provide a rational basis for characterizing exposure risks and developing biomarkers of exposure and effect. Since RyR genes exhibit a significant number of expressed mutations and polymorphisms in the human population, data supporting RyR as a molecular target of PCBs in the developing nervous system will provide insights into genetic susceptibilities that magnify environmentally induced neurodevelopmental disorders.

Public Health Relevance

Polychlorinated biphenyls (PCBs) are persistent, widespread environmental contaminants, and there is compelling evidence that exposure of the developing brain to PCBs can cause learning and memory problems in children. But how PCBs cause these effects is not well understood. The goal of the proposed studies is to link known molecular effects of PCBs (activation of ryanodine receptors) to specific changes in brain development (disruption of dendritic growth). Establishing this link will provide a powerful means for predicting which of the 209 possible PCBs present the greatest risk to the developing brain and may provide novel insights into genetic susceptibilities that magnify environmentally induced neurodevelopmental disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES014901-04
Application #
8197470
Study Section
Special Emphasis Panel (ZRG1-IFCN-A (03))
Program Officer
Lawler, Cindy P
Project Start
2008-12-01
Project End
2013-11-30
Budget Start
2011-12-01
Budget End
2012-11-30
Support Year
4
Fiscal Year
2012
Total Cost
$458,921
Indirect Cost
$160,355
Name
University of California Davis
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Frank, Daniel F; Miller, Galen W; Harvey, Danielle J et al. (2018) Bifenthrin causes transcriptomic alterations in mTOR and ryanodine receptor-dependent signaling and delayed hyperactivity in developing zebrafish (Danio rerio). Aquat Toxicol 200:50-61
Zheng, Jing; Chen, Juan; Zou, Xiaohan et al. (2018) Saikosaponin d causes apoptotic death of cultured neocortical neurons by increasing membrane permeability and elevating intracellular Ca2+ concentration. Neurotoxicology 70:112-121
Keil, Kimberly P; Miller, Galen W; Chen, Hao et al. (2018) PCB 95 promotes dendritic growth in primary rat hippocampal neurons via mTOR-dependent mechanisms. Arch Toxicol 92:3163-3173
Zheng, Jing; McKinnie, Shaun M K; El Gamal, Abrahim et al. (2018) Organohalogens Naturally Biosynthesized in Marine Environments and Produced as Disinfection Byproducts Alter Sarco/Endoplasmic Reticulum Ca2+ Dynamics. Environ Sci Technol 52:5469-5478
Chen, Xiaopeng; Walter, Kyla M; Miller, Galen W et al. (2018) Simultaneous quantification of T4, T3, rT3, 3,5-T2 and 3,3'-T2 in larval zebrafish (Danio rerio) as a model to study exposure to polychlorinated biphenyls. Biomed Chromatogr 32:e4185
Miller, Galen W; Chandrasekaran, Vidya; Yaghoobi, Bianca et al. (2018) Opportunities and challenges for using the zebrafish to study neuronal connectivity as an endpoint of developmental neurotoxicity. Neurotoxicology 67:102-111
Li, Xueshu; Holland, Erika B; Feng, Wei et al. (2018) Authentication of synthetic environmental contaminants and their (bio)transformation products in toxicology: polychlorinated biphenyls as an example. Environ Sci Pollut Res Int 25:16508-16521
Sethi, Sunjay; Keil, Kimberly P; Lein, Pamela J (2018) 3,3'-Dichlorobiphenyl (PCB 11) promotes dendritic arborization in primary rat cortical neurons via a CREB-dependent mechanism. Arch Toxicol 92:3337-3345
Philippat, Claire; Barkoski, Jacqueline; Tancredi, Daniel J et al. (2018) Prenatal exposure to organophosphate pesticides and risk of autism spectrum disorders and other non-typical development at 3 years in a high-risk cohort. Int J Hyg Environ Health 221:548-555
Frank, Daniel F; Miller, Galen W; Connon, Richard E et al. (2017) Transcriptomic profiling of mTOR and ryanodine receptor signaling molecules in developing zebrafish in the absence and presence of PCB 95. PeerJ 5:e4106

Showing the most recent 10 out of 68 publications