The overall goal of our research program is to gain a greater understanding of the intercellular and intracellular signaling pathways that provide neuroprotection of both rod and cone photoreceptor cells. The specific objective of this renewal application is to investigate the role of phosphoinositides (PI), particularly those produced by phosphoinositide 3-kinase (PI3K), in this process. Studies from our laboratory over the past two decades have shown that the retina and both rod and cone outer segments have an active PI metabolism. Interestingly, conditional deletion of class I PI3K from cones resulted in an age-related cone degeneration and the phenotype was not rescued by healthy rods, suggesting that rod-derived cone survival factors may signal through cone PI3K.
The Aims of the proposed research are: 1) to define the relationship between the phosphoinositide signaling pathway and cone survival, 2) to search for the mechanisms of cone cell death in retinas with rod-specific mutations, and 3) find ways to rescue sick and dying cones. It is our hypothesis that PI3K-generated PIs provide neuroprotection and regulate cellular processes requisite for promoting and sustaining cone photoreceptor functionality and viability. In humans, age-related macular degeneration and diabetic retinopathy are the most common disorders affecting cones. Cones also are affected indirectly in diseases such as retinitis pigmentosa and directly in cone and cone-rod dystrophies. Achieving the above Aims will provide the basis for the development of novel therapeutic interventions to prevent the progressive and irreversible loss of cone viability, structural integrity, and function.

Public Health Relevance

The retina lives in a hostile environment and is exposed daily to genetic and metabolic stresses. To survive, the retina has developed remarkable protective mechanisms. Our long-term goal is to understand these mechanisms as a foundation on which novel drug therapies can be designed to protect retinal function in patients who suffer from retinal degenerations.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
2R01EY000871-40A1
Application #
8696202
Study Section
Special Emphasis Panel (BVS)
Program Officer
Neuhold, Lisa
Project Start
1995-02-01
Project End
2015-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
40
Fiscal Year
2014
Total Cost
$370,000
Indirect Cost
$120,000
Name
University of Oklahoma Health Sciences Center
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
878648294
City
Oklahoma City
State
OK
Country
United States
Zip Code
73117
Rajala, Raju V S; Rajala, Ammaji (2018) Redundant and Nonredundant Functions of Akt Isoforms in the Retina. Adv Exp Med Biol 1074:585-591
Rajala, Ammaji; Wang, Yuhong; Brush, Richard S et al. (2018) Pyruvate kinase M2 regulates photoreceptor structure, function, and viability. Cell Death Dis 9:240
Rajala, Ammaji; Wang, Yuhong; Rajala, Raju V S (2018) Constitutive Activation Mutant mTOR Promote Cone Survival in Retinitis Pigmentosa Mice. Adv Exp Med Biol 1074:491-497
Wang, Yuhong; Rajala, Ammaji; Rajala, Raju V S (2018) Nanoparticles as Delivery Vehicles for the Treatment of Retinal Degenerative Diseases. Adv Exp Med Biol 1074:117-123
Agbaga, Martin-Paul; Merriman, Dana K; Brush, Richard S et al. (2018) Differential composition of DHA and very-long-chain PUFAs in rod and cone photoreceptors. J Lipid Res 59:1586-1596
Hopiavuori, Blake R; Deák, Ferenc; Wilkerson, Joseph L et al. (2018) Homozygous Expression of Mutant ELOVL4 Leads to Seizures and Death in a Novel Animal Model of Very Long-Chain Fatty Acid Deficiency. Mol Neurobiol 55:1795-1813
Hopiavuori, Blake R; Agbaga, Martin-Paul; Brush, Richard S et al. (2017) Regional changes in CNS and retinal glycerophospholipid profiles with age: a molecular blueprint. J Lipid Res 58:668-680
Bennett, Lea D; Anderson, Robert E (2016) Current Progress in Deciphering Importance of VLC-PUFA in the Retina. Adv Exp Med Biol 854:145-51
Rajala, Raju V S; Kanan, Yogita; Anderson, Robert E (2016) Photoreceptor Neuroprotection: Regulation of Akt Activation Through Serine/Threonine Phosphatases, PHLPP and PHLPPL. Adv Exp Med Biol 854:419-24
Rajala, Ammaji; Wang, Yuhong; Rajala, Raju V S (2016) Activation of oncogenic tyrosine kinase signaling promotes insulin receptor-mediated cone photoreceptor survival. Oncotarget 7:46924-46942

Showing the most recent 10 out of 188 publications