The molecular mechanisms of invertebrate phototransduction and invertebrate retinal degeneration are to be investigated. The studies focus on a test of the capacitative Ca2+-entry hypothesis and make use of Drosophila mutants with defects in genes encoding ion channels that appear to be necessary for refilling intracellular Ca2+ stores. Three lines of research are proposed. One is to transform flies with mutant forms of the trp gene to analyze structure/function relationships. Another line of investigation is to determine more directly the effects of the TRP mutations by expressing and analyzing the mutant proteins in oocytes. The third area of investigation is to monitor Ca2+ uptake and release in preparations of fly eye microsomes. Information from these studies is to be applied to the understanding of degeneration observed in certain Drosophila mutants.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY003529-17
Application #
2518728
Study Section
Special Emphasis Panel (ZRG1-VISC (01))
Project Start
1981-09-01
Project End
1999-08-31
Budget Start
1997-09-01
Budget End
1998-08-31
Support Year
17
Fiscal Year
1997
Total Cost
Indirect Cost
Name
Hebrew University of Jerusalem
Department
Type
DUNS #
600044978
City
Jerusalem
State
Country
Israel
Zip Code
91904
Voolstra, Olaf; Rhodes-Mordov, Elisheva; Katz, Ben et al. (2017) The Phosphorylation State of the Drosophila TRP Channel Modulates the Frequency Response to Oscillating Light In Vivo. J Neurosci 37:4213-4224
Weiss, Shirley; Minke, Baruch (2015) A new genetic model for calcium induced autophagy and ER-stress in Drosophila photoreceptor cells. Channels (Austin) 9:14-20
Kohn, Elkana; Katz, Ben; Yasin, Bushra et al. (2015) Functional cooperation between the IP3 receptor and phospholipase C secures the high sensitivity to light of Drosophila photoreceptors in vivo. J Neurosci 35:2530-46
Katz, Ben; Oberacker, Tina; Richter, David et al. (2013) Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo. J Cell Sci 126:3121-33
Lev, Shaya; Katz, Ben; Tzarfaty, Vered et al. (2012) Signal-dependent hydrolysis of phosphatidylinositol 4,5-bisphosphate without activation of phospholipase C: implications on gating of Drosophila TRPL (transient receptor potential-like) channel. J Biol Chem 287:1436-47
Lev, Shaya; Katz, Ben; Minke, Baruch (2012) The activity of the TRP-like channel depends on its expression system. Channels (Austin) 6:86-93
Katz, Ben; Minke, Baruch (2012) Phospholipase C-mediated suppression of dark noise enables single-photon detection in Drosophila photoreceptors. J Neurosci 32:2722-33
Weiss, Shirley; Kohn, Elkana; Dadon, Daniela et al. (2012) Compartmentalization and Ca2+ buffering are essential for prevention of light-induced retinal degeneration. J Neurosci 32:14696-708
Richter, David; Katz, Ben; Oberacker, Tina et al. (2011) Translocation of the Drosophila transient receptor potential-like (TRPL) channel requires both the N- and C-terminal regions together with sustained Ca2+ entry. J Biol Chem 286:34234-43
Minke, Baruch (2010) The history of the Drosophila TRP channel: the birth of a new channel superfamily. J Neurogenet 24:216-33

Showing the most recent 10 out of 80 publications