Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY005665-12
Application #
2159518
Study Section
Visual Sciences A Study Section (VISA)
Project Start
1984-12-01
Project End
1996-11-30
Budget Start
1995-12-01
Budget End
1996-11-30
Support Year
12
Fiscal Year
1996
Total Cost
Indirect Cost
Name
Schepens Eye Research Institute
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02114
Lee, Albert; Karamichos, Dimitrios; Onochie, Obianamma E et al. (2018) Hypoxia modulates the development of a corneal stromal matrix model. Exp Eye Res 170:127-137
Sriram, Sriniwas; Tran, Jennifer A; Guo, Xiaoqing et al. (2017) Development of wound healing models to study TGF?3's effect on SMA. Exp Eye Res 161:52-60
Han, Kyu-Yeon; Tran, Jennifer A; Chang, Jin-Hong et al. (2017) Potential role of corneal epithelial cell-derived exosomes in corneal wound healing and neovascularization. Sci Rep 7:40548
Sriram, Sriniwas; Tran, Jennifer A; Guo, Xiaoqing et al. (2017) PDGFR? Is a Key Regulator of T1 and T3's Differential Effect on SMA Expression in Human Corneal Fibroblasts. Invest Ophthalmol Vis Sci 58:1179-1186
Guo, Xiaoqing; Hutcheon, Audrey E K; Tran, Jennifer A et al. (2017) TGF-?-target genes are differentially regulated in corneal epithelial cells and fibroblasts. New Front Ophthalmol 3:
Zareian, Ramin; Susilo, Monica E; Paten, Jeffrey A et al. (2016) Human Corneal Fibroblast Pattern Evolution and Matrix Synthesis on Mechanically Biased Substrates. Tissue Eng Part A 22:1204-1217
Guo, Xiaoqing; Hutcheon, Audrey E K; Zieske, James D (2016) Molecular insights on the effect of TGF-?1/-?3 in human corneal fibroblasts. Exp Eye Res 146:233-41
Pal-Ghosh, Sonali; Pajoohesh-Ganji, Ahdeah; Tadvalkar, Gauri et al. (2016) Topical Mitomycin-C enhances subbasal nerve regeneration and reduces erosion frequency in the debridement wounded mouse cornea. Exp Eye Res 146:361-9
Sriram, Sriniwas; Tran, Jennifer A; Zieske, James D (2016) Cornea As a Model for Testing CTGF-Based Antiscarring Drugs. Bone Tissue Regen Insights 7:
Karamichos, D; Hutcheon, A E K; Zieske, J D (2014) Reversal of fibrosis by TGF-?3 in a 3D in vitro model. Exp Eye Res 124:31-6

Showing the most recent 10 out of 46 publications