Myopia is a significant global public health concern. Despite continued research on the regulation of eye size and refraction, no therapeutic targets have been identified and no pharmaceutical or optometric approaches have proven effective in the majority of cases. The increasing prevalence of myopia and earlier age of onset emphasize the need for the identification of pharmaceutical targets for the development of an effective therapy. Therefore, the long-term goal is to identify intraocular regulators of scleral growth for the treatment and prevention of ocular growth disorders. Studies using several animal models demonstrate changes in choroidal synthesis of all-trans-retinoic acid (atRA) in response to visual stimuli. However, virtually nothing is known about the cellular and molecular events responsible for the regulation of atRA activity in the choroid and sclera. Therefore, the objective of this application is to identify the proteins in the choroid and sclera that regulate the synthess and activity of atRA during visually-guided ocular growth. Preliminary results indicate that a unique subpopulation of choroid stromal cells mediate changes in atRA synthesis in response to visual stimuli via the atRA synthesizing enzyme retinaldehyde dehydrogenase 2 (RALDH2). Moreover, atRA concentrations generated by the choroid are sufficient to modulate scleral proteoglycan synthesis to levels known to cause in changes in the rate of ocular growth and refraction. Therefore, the central hypothesis of this proposal is that local concentrations of atRA are generated in the choroid to regulate local changes in scleral matrix remodeling and thereby control the rate of ocular elongation. Based on this hypothesis, we predict that manipulation of endogenous concentrations of atRA within the choroid will alter postnatal ocular growth. Guided by strong preliminary data, this hypothesis will be tested by pursuing three specific aims:1) Identify choroidal proteins that regulate the synthesis of atRA during visually-guided ocular growth;2) Identify the cellular target of choriodal atRA during visually guided ocular growth;and 3) Assess the effects of local retinoid signaling on the modulation of eye growth in vivo. Results from aims 1 and 2 will identify the proteins that regulate the synthesis and action of atRA in the choroid and sclera. These results will be applied to the development of our in vivo model proposed in Aim 3 and are anticipated to demonstrate that in vivo modulation of choroidal atRA synthesis directly effects ocular growth and refraction. The approach is innovative, because it takes advantage of recently developed tools for gene delivery to manipulate expression of atRA-regulatory proteins in a genetically tractable chick model system. The development of this system will enable functional studies to identify the molecular mechanisms that underpin emmetropization and visually guided ocular growth. The proposed research is significant because it will provide a broader understanding of atRA metabolism in a completely uncharacterized biological system. Ultimately, such knowledge will provide multiple avenues for the development of new, specifically targeted pharmacologic strategies for the treatment of myopia.

Public Health Relevance

The proposed research is relevant to public health because the identification of intraocular growth regulators of scleral remodeling will provide new therapeutic targets in the choroid and/or sclera for the treatment and prevention of ocular growth disorders. Thus the proposed research is relevant to the part of NEI's mission to obtain fundamental understanding on the development and prevention or treatment of myopia.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY009391-23
Application #
8702181
Study Section
(BVS)
Program Officer
Wiggs, Cheri
Project Start
1992-01-01
Project End
2016-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
23
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Oklahoma Health Sciences Center
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
City
Oklahoma City
State
OK
Country
United States
Zip Code
73117
Harper, Angelica R; Le, Anh T; Mather, Timothy et al. (2018) Design, synthesis, and ex vivo evaluation of a selective inhibitor for retinaldehyde dehydrogenase enzymes. Bioorg Med Chem 26:5766-5779
Harper, Angelica R; Wang, Xiang; Moiseyev, Gennadiy et al. (2016) Postnatal Chick Choroids Exhibit Increased Retinaldehyde Dehydrogenase Activity During Recovery From Form Deprivation Induced Myopia. Invest Ophthalmol Vis Sci 57:4886-4897
Summers, Jody A; Harper, Angelica R; Feasley, Christa L et al. (2016) Identification of Apolipoprotein A-I as a Retinoic Acid-binding Protein in the Eye. J Biol Chem 291:18991-9005
Harper, Angelica R; Wiechmann, Allan F; Moiseyev, Gennadiy et al. (2015) Identification of active retinaldehyde dehydrogenase isoforms in the postnatal human eye. PLoS One 10:e0122008
Harper, Angelica R; Summers, Jody A (2015) The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development. Exp Eye Res 133:100-11
Summers, Jody A (2013) The choroid as a sclera growth regulator. Exp Eye Res 114:120-7
Rada, Jody A Summers; Hollaway, Lindsey R; Lam, Wengtse et al. (2012) Identification of RALDH2 as a visually regulated retinoic acid synthesizing enzyme in the chick choroid. Invest Ophthalmol Vis Sci 53:1649-62
Summers Rada, Jody A; Hollaway, Lindsey R (2011) Regulation of the biphasic decline in scleral proteoglycan synthesis during the recovery from induced myopia. Exp Eye Res 92:394-400
Rada, Jody A Summers; Wiechmann, Allan F; Hollaway, Lindsey R et al. (2010) Increased hyaluronan synthase-2 mRNA expression and hyaluronan accumulation with choroidal thickening: response during recovery from induced myopia. Invest Ophthalmol Vis Sci 51:6172-9
Wiechmann, Allan F; Hollaway, Lindsey R; Rada, Jody A Summers (2009) Melatonin receptor expression in Xenopus laevis surface corneal epithelium: diurnal rhythm of lateral membrane localization. Mol Vis 15:2384-403

Showing the most recent 10 out of 35 publications