The long-term goal of this project is to elucidate the molecular mechanisms underlying photoreceptor cell fate specification in the vertebrate retina. Our recent studies suggest that the genetic program that drives photoreceptor cell fate specification involves neuroD and neurogenin2 (ngn2). The current project addresses four specific questions: (1) Are neuroD and ngn2 expressed at the right place during the right time to be intrinsic factors participating in photoreceptor neurogenesis? Double labeling will be used to determine whether cells expressing ngn2, or neuroD, are proliferating, postmitotic, or both. (2) What is the role of ngn2 in photoreceptor cell fate determination? Does ngn2 specify photoreceptor fate exclusively, or does it also lead to the genesis of other types of retinal cells? Both gain- and loss-of-function analyses will be used to study the function of ngn2, using retroviral-driven misexpression of ngn2 and an active repression construct in the developing chick retina. Retinal pigment epithelial (RPE) cell cultures derived from day 6 chick embryos will be used to examine whether ngn2 can selectively induce RPE transdifferentiation towards a photoreceptor fate. (3) Is neuroD required for photoreceptor production? In other words, will the suppression of neuroD expression and the repression of NeuroD protein function result in a photoreceptor deficit in an otherwise normal retina? Antisense oligonucleotides and Engrailed-mediated active repression will be used to suppress neuroD expression and NeuroD protein function, respectively. Retinal neurogenesis will be analyzed to determine whether attenuation of neuroD expression and function will produce photoreceptor-deficient retinas. (4) Is neuroD sufficient to induce the entire program of photoreceptor differentiation when ectopically expressed in RPE cells that will be provided with an environment for differentiation within the subretinal space of a chick embryo? Transdifferentiating cells will be placed into the subretinal space of chick embryos whose retinal neurogenesis has been manipulated to produce fewer photoreceptor cells. The developmental potential of the microinjected cells will be assessed at the molecular and cellular levels to determine whether these cells can develop into bona fide photoreceptors. These four studies promise new insight into the genetic control of photoreceptor fate specification. Furthermore, they may have clinical implications: neuroD, in conjunction with other factors, may be able to transform cultured RPE cells into photoreceptor cells as a source of cells for photoreceptor replacement therapies.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY011640-06
Application #
6605724
Study Section
Visual Sciences C Study Section (VISC)
Program Officer
Hunter, Chyren
Project Start
1997-01-01
Project End
2005-06-30
Budget Start
2003-07-01
Budget End
2004-06-30
Support Year
6
Fiscal Year
2003
Total Cost
$287,000
Indirect Cost
Name
University of Alabama Birmingham
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Yan, Run-Tao; He, Li; Zhan, Wenjie et al. (2015) Induction of ectopic retina-like tissue by transgenic expression of neurogenin. PLoS One 10:e0116171
Wang, Shu-Zhen; Yan, Run-Tao (2014) The Retinal Pigment Epithelium: a Convenient Source of New Photoreceptor cells? J Ophthalmic Vis Res 9:83-93
Yan, Run-Tao; Li, Xiumei; Wang, Shu-Zhen (2013) Photoreceptor-like cells in transgenic mouse eye. Invest Ophthalmol Vis Sci 54:4766-75
Yan, Run-Tao; Li, Xiumei; Huang, Jian et al. (2013) Photoreceptor-like cells from reprogramming cultured mammalian RPE cells. Mol Vis 19:1178-87
Ma, Wenxin; Wang, Shu-Zhen (2012) Fate tracing of neurogenin2-expressing cells in the mouse retina using CreERýýý: LacZ. Methods Mol Biol 884:141-52
Wang, Shu-Zhen; Yan, Run-Tao (2012) Chick retinal pigment epithelium transdifferentiation assay for proneural activities. Methods Mol Biol 884:201-9
Yan, Run-Tao; Wang, Shu-Zhen (2012) Production of high-titer RCAS retrovirus. Methods Mol Biol 884:193-9
Yan, Run-Tao; Liang, Lina; Ma, Wenxin et al. (2010) Neurogenin1 effectively reprograms cultured chick retinal pigment epithelial cells to differentiate toward photoreceptors. J Comp Neurol 518:526-46
Li, Xiumei; Ma, Wenxin; Zhuo, Yehong et al. (2010) Using neurogenin to reprogram chick RPE to produce photoreceptor-like neurons. Invest Ophthalmol Vis Sci 51:516-25
Wang, Shu-Zhen; Ma, Wenxin; Yan, Run-Tao et al. (2010) Generating retinal neurons by reprogramming retinal pigment epithelial cells. Expert Opin Biol Ther 10:1227-39

Showing the most recent 10 out of 34 publications