The first event in light perception is capture of a photon by an opsin visual-pigment within a photoreceptor cell of the retina. This triggers a chemical change in the retinaldehyde chromophore, a small molecule related to vitamin A contained within each opsin pigment. This can be likened to the tripping a mouse trap. Before light sensitivity can be restored to the `bleached'pigment, the retinaldehyde chromophore must be chemically regenerated, i.e., the mouse trap must be reset. This is accomplished by a multi-step enzyme pathway in the retinal pigment epithelium (RPE), a layer of cells adjacent to the retina. Mutations in the gene for almost every protein within this enzyme pathway cause some type of inherited blinding disease. This indicates the importance of the `visual cycle'to vision in humans. Over the years, evidence has accumulated that another type of cell, the Muller cell, located within the retina, also participates in the regeneration of visual chromophore. In particular, Muller cells may assist in the regeneration of chromophore destined for cone photoreceptors. Cones provide high-resolution color vision in bright light, and are critical to normal sight in humans. Almost nothing is known about how Muller cells regenerate visual chromophore, and what are the relative contributions of RPE versus Muller cells in rod-dominant species, such as humans. The current application addresses these questions using a `two-pronged'approach. One set of experiments seeks to identify each protein responsible for the vitamin A-processing activities detected in retina homogenates. Another set of experiments seeks to define the function of each vitamin A-processing protein previously identified in Muller cells. Information from these approaches should converge to yield a clear picture about the role of Muller cells in visual-pigment regeneration.

Public Health Relevance

Light perception is mediated by visual pigments in the eye. For sustained vision, these pigments must be continuously regenerated. This project is to study the biochemical mechanisms of visual-pigment regeneration. Defects in pigment regeneration cause inherited blinding diseases. The project will help us understand how these genetic diseases arise.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY011713-15
Application #
8037002
Study Section
Biology and Diseases of the Posterior Eye Study Section (BDPE)
Program Officer
Neuhold, Lisa
Project Start
1997-03-01
Project End
2013-02-28
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
15
Fiscal Year
2011
Total Cost
$365,904
Indirect Cost
Name
University of California Los Angeles
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Lenis, Tamara L; Hu, Jane; Ng, Sze Yin et al. (2018) Expression of ABCA4 in the retinal pigment epithelium and its implications for Stargardt macular degeneration. Proc Natl Acad Sci U S A 115:E11120-E11127
Cook, Jeremy D; Ng, Sze Yin; Lloyd, Marcia et al. (2017) Peropsin modulates transit of vitamin A from retina to retinal pigment epithelium. J Biol Chem 292:21407-21416
Kaylor, Joanna J; Xu, Tongzhou; Ingram, Norianne T et al. (2017) Blue light regenerates functional visual pigments in mammals through a retinyl-phospholipid intermediate. Nat Commun 8:16
Kaylor, Joanna J; Radu, Roxana A; Bischoff, Nicholas et al. (2015) Diacylglycerol O-acyltransferase type-1 synthesizes retinyl esters in the retina and retinal pigment epithelium. PLoS One 10:e0125921
Kaylor, Joanna J; Cook, Jeremy D; Makshanoff, Jacob et al. (2014) Identification of the 11-cis-specific retinyl-ester synthase in retinal Müller cells as multifunctional O-acyltransferase (MFAT). Proc Natl Acad Sci U S A 111:7302-7
Sato, Kota; Li, Songhua; Gordon, William C et al. (2013) Receptor interacting protein kinase-mediated necrosis contributes to cone and rod photoreceptor degeneration in the retina lacking interphotoreceptor retinoid-binding protein. J Neurosci 33:17458-68
Kaylor, Joanna J; Yuan, Quan; Cook, Jeremy et al. (2013) Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina. Nat Chem Biol 9:30-6
Blakeley, Lorie R; Chen, Chunhe; Chen, Ching-Kang et al. (2011) Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation. Invest Ophthalmol Vis Sci 52:3483-91
Radu, Roxana A; Hu, Jane; Yuan, Quan et al. (2011) Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration. J Biol Chem 286:18593-601
Kawaguchi, Riki; Yu, Jiamei; Ter-Stepanian, Mariam et al. (2011) Receptor-mediated cellular uptake mechanism that couples to intracellular storage. ACS Chem Biol 6:1041-51

Showing the most recent 10 out of 22 publications