(from abstract): The long-term goal of this application is to identify those interactions between Pax-6 and other transcription factors that are required for normal lens development and transparency. Pax-6, a paired domain and homeodomain containing transcription factor, is essential for lens formation and function. Mutations in Pax-6 cause several human ocular diseases: aniridia, Peter's anomaly, autosomal dominant keratitis, foveal hypoplasia, and some forms of cataract. These defects lead to loss of vision. It is recognized that lens refraction and transparency depend on the accumulation of high concentrations and short-range interaction of multifunctional proteins, the crystallins. Recent in vivo studies demonstrated that missexpression of crystallins can lead to lens opacification resulting in cataracts. In order to carry out this long term goal of this project the following specific aims are proposed,-. (1) To identify and functionally characterize general trancription factors that interact with and mediate the transcriptional activity of Pax-6; (2) To identify and functionally characterize other DNA binding and non-DNA binding transcription factors that synergistically interact with Pax-6.
These specific aims will be achieved using an integrative approach involving functional in vitro (transcription using recombinant factors and nuclear extracts) and in vivo (transfections of cultured lens and non-lens cells) studies combined with protein-DNA binding assays using recombinant proteins and lens nuclear extracts, and protein-protein interactions studied in solution and on a solid matrix. The feasibility of the proposed study is demonstrated by preliminary data demonstrating those lens crystallin genes which are targets for Pax-6, identifying those other transcription factors that act in conjunction with Pax-6 (e.g. retinoic acid activated nuclear receptors), and by demonstrating the function of crystallin promoters fused to reporter genes in both transfected lens cells and in transgenic mice. Collectively, these studies form the basis for a functional model of Pax-6 mediated gene regulation that applies to both crystallin gene regulation and noncrystallin genes expressed in the lens.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY012200-03
Application #
6489842
Study Section
Visual Sciences A Study Section (VISA)
Program Officer
Liberman, Ellen S
Project Start
2000-01-01
Project End
2004-12-31
Budget Start
2002-01-01
Budget End
2002-12-31
Support Year
3
Fiscal Year
2002
Total Cost
$402,373
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Martynova, Elena; Bouchard, Maxime; Musil, Linda S et al. (2018) Identification of Novel Gata3 Distal Enhancers Active in Mouse Embryonic Lens. Dev Dyn 247:1186-1198
Zhao, Yilin; Wilmarth, Phillip A; Cheng, Catherine et al. (2018) Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers. Exp Eye Res 179:32-46
Diacou, Raven; Zhao, Yilin; Zheng, Deyou et al. (2018) Six3 and Six6 Are Jointly Required for the Maintenance of Multipotent Retinal Progenitors through Both Positive and Negative Regulation. Cell Rep 25:2510-2523.e4
Esteban-Martínez, Lorena; Sierra-Filardi, Elena; McGreal, Rebecca S et al. (2017) Programmed mitophagy is essential for the glycolytic switch during cell differentiation. EMBO J 36:1688-1706
Cvekl, Ales; Zhao, Yilin; McGreal, Rebecca et al. (2017) Evolutionary Origins of Pax6 Control of Crystallin Genes. Genome Biol Evol 9:2075-2092
Cvekl, Ales; Callaerts, Patrick (2017) PAX6: 25th anniversary and more to learn. Exp Eye Res 156:10-21
Liu, Wei; Cvekl, Ales (2017) Six3 in a small population of progenitors at E8.5 is required for neuroretinal specification via regulating cell signaling and survival in mice. Dev Biol 428:164-175
Cvekl, Ales; Zhang, Xin (2017) Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet 33:677-702
Cavalheiro, Gabriel R; Matos-Rodrigues, Gabriel E; Zhao, Yilin et al. (2017) N-myc regulates growth and fiber cell differentiation in lens development. Dev Biol 429:105-117
Sun, Jian; Zhao, Yilin; McGreal, Rebecca et al. (2016) Pax6 associates with H3K4-specific histone methyltransferases Mll1, Mll2, and Set1a and regulates H3K4 methylation at promoters and enhancers. Epigenetics Chromatin 9:37

Showing the most recent 10 out of 59 publications