A major and enduring question in neuroscience is to understand the cellular mechanisms underlying the establishment and refinement of synaptic connectivity between developing sense organs and their central targets. Over the past two decades, the mammalian retinogeniculate pathway has served as an important model for demonstrating how precise patterns of connectivity are formed and the manner in which patterned activity shapes them. Prior to eye opening, aggregates of retinal ganglion cells fire in a coordinated spatiotemporal manner. These impulses travel in waves across the retina, are then transmitted to LGN and cause relay cells to strongly discharge. It is widely believed that such activity is needed for the final sculpting of adult-like retinogeniculate connections. Moreover, associative synaptic processes such as long-term potentiation (LTP) and long-term depression (LTD) are thought to represent the Hebbian substrate by which co-active inputs are maintained and less active and/or asynchronous ones are pruned. Despite the overwhelming evidence underscoring the role of activity in shaping the refinement of retinogeniculate connections, it remains to be seen whether the coordinated discharge patterns of developing retinal ganglion cells can support Hebbian modifications in synaptic strength. The primary objectives of the present proposal are to ascertain whether the intrinsic activity of developing retinal ganglion cells can support long-term changes in synaptic efficacy (potentiation and depression) in LGN and then determine whether such associative changes underlie the activity-dependent refinement of retinogeniculate connections. The synaptic responses of LGN cells are studied by utilizing an isolated brainstem preparation where the dorsal thalamus and large segments of each optic nerve remain intact. Using in vitro recording techniques, the optic nerves are electrically shocked and the synaptic responses in IGN are recorded either in the form of whole-cell intracellular responses (EPSPs and EPSCs) or extracellular riled potentials. To determine whether the synaptic responses of LGN cells are subject to long-term modification, optic nerves are shocked by delivering repetitive shocks to retinal fibers in a manner that mimics the concerted discharge patterns of retinal ganglion cells or in a way that models reduced retinal activity. Specifically, we plan to test whether associative processes like long-term potentiation or depression exist at the retinogeniculate synapse, learn whether changes in synaptic strength are linked to the stabilization of retinogeniculate connections, and to elucidate the pharmacology underlying the induction and maintenance of such plasticity.
Showing the most recent 10 out of 29 publications