The proposed research program endeavors to advance our understanding of the mechanisms by which the lipofuscin that accumulates in retinal pigment epithelial cells (RPE) contributes to disease processes in atrophic macular degeneration, including age-related and juvenile (Stargardt disease and Best vitelliform macular dystrophy) forms. The lipofuscin of RPE cells originates primarily in photoreceptor cells and is generated, in large part, from reactions of all-trans-retinal, which forms when visual pigment absorbs photons of light. To achieve our objectives, we will conduct experiments using cell culture, in vitro assays and mouse models. In light of genetic discoveries linking age-related macular degeneration (AMD) to inflammatory processes, we will investigate photooxidation products of bisretinoid RPE lipofuscin pigments as activators of complement, an element of immune pathways (Aim 1). These studies address four factors posited as being associated with AMD: inflammation, oxidative damage, drusen and RPE lipofuscin. We will also compare known lipofuscin constituents in terms of their propensity for photo-generating reactive forms of oxygen and for photo-induced cleavage (Aim 2). In studies related to Best vitelliform macular dystrophy and other VMD2-associated disorders, we will explore the hypothesis that dysfunctioning of bestrophin-1, the protein product of VMD2, alters intracellular chloride conductances thereby changing pH-dependent rates of photooxidation and equilibria between protonated/conjugated and unprotonated/unconjugated forms of the all-trans-retinal dimer series of RPE lipofuscin pigments. We propose that the shift in equilibrium favors an RPE lipofuscin constituent (unconjugated all-trans-retinal dimer) that is aldehyde-bearing and more photoreactive (Aim 3).

Public Health Relevance

The National Eye Institute has as a 5-year program goal, improved understanding of the molecular and biochemical basis of macular degeneration. AMD affects more than 1.75 million people in the United States. Based on a prevalence of 1/10,000, an additional 30,000 Americans are afflicted with Stargardt disease. Due to the trend toward population aging, the number of cases of AMD could increase to 3 million by 2020. Greater insight into the identities and properties of individual RPE lipofuscin pigments, their adverse behaviors and the factors that influence their formation will facilitate the emergence of novel therapeutic approaches to minimize lipofuscin accumulation and/or neutralize its impact, and thus reduce the incidence and progression of macular degeneration.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY012951-10
Application #
7903889
Study Section
Biology and Diseases of the Posterior Eye Study Section (BDPE)
Program Officer
Neuhold, Lisa
Project Start
2000-05-01
Project End
2013-08-31
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
10
Fiscal Year
2010
Total Cost
$398,475
Indirect Cost
Name
Columbia University (N.Y.)
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Dhingra, Anuradha; Bell, Brent A; Peachey, Neal S et al. (2018) Microtubule-Associated Protein 1 Light Chain 3B, (LC3B) Is Necessary to Maintain Lipid-Mediated Homeostasis in the Retinal Pigment Epithelium. Front Cell Neurosci 12:351
Ueda, Keiko; Kim, Hye Jin; Zhao, Jin et al. (2018) Iron promotes oxidative cell death caused by bisretinoids of retina. Proc Natl Acad Sci U S A 115:4963-4968
Paavo, Maarjaliis; Zhao, Jin; Kim, Hye Jin et al. (2018) Mutations in GPR143/OA1 and ABCA4 Inform Interpretations of Short-Wavelength and Near-Infrared Fundus Autofluorescence. Invest Ophthalmol Vis Sci 59:2459-2469
Kim, Hye Jin; Sparrow, Janet R (2018) Novel bisretinoids of human retina are lyso alkyl ether glycerophosphoethanolamine-bearing A2PE species. J Lipid Res 59:1620-1629
Zhao, Jin; Kim, Hye Jin; Sparrow, Janet R (2017) Multimodal Fundus Imaging of Sodium Iodate-Treated Mice Informs RPE Susceptibility and Origins of Increased Fundus Autofluorescence. Invest Ophthalmol Vis Sci 58:2152-2159
Wang, Yong; Kim, Hye Jin; Sparrow, Janet R (2017) Quercetin and cyanidin-3-glucoside protect against photooxidation and photodegradation of A2E in retinal pigment epithelial cells. Exp Eye Res 160:45-55
Sparrow, Janet R (2016) Vitamin A-aldehyde adducts: AMD risk and targeted therapeutics. Proc Natl Acad Sci U S A 113:4564-9
Ueda, Keiko; Zhao, Jin; Kim, Hye Jin et al. (2016) Photodegradation of retinal bisretinoids in mouse models and implications for macular degeneration. Proc Natl Acad Sci U S A 113:6904-9
Zhou, Jilin; Ueda, Keiko; Zhao, Jin et al. (2015) Correlations between Photodegradation of Bisretinoid Constituents of Retina and Dicarbonyl Adduct Deposition. J Biol Chem 290:27215-27
Liu, Zhao; Ueda, Keiko; Kim, Hye Jin et al. (2015) Photobleaching and Fluorescence Recovery of RPE Bisretinoids. PLoS One 10:e0138081

Showing the most recent 10 out of 98 publications