The congenital fibrosis syndromes are oculomotility disorders characterized by restrictive ophthalmoplegia with or without ptosis, and each disorder varies in the fixed position of the globes and in the specifically affected cranial nerve(s) and extraocular muscles (EOMs). The neuropathologic bases of two fibrosis syndromes have been described; Duane syndrome results from absence of the abducens nerve and nucleus, while CFEOM1 results from an absence of the superior division of the oculomotor nerve and corresponding oculomotor subnuclei. The laboratory's long-term goals are to uncover the molecular basis of the fibrosis syndromes and to study the development of the oculomotor lower motor neuron system. Toward these goals, we have genetically defined four congenital fibrosis loci and one congenital ptosis locus, and are in the process of positionally cloning these genes. In this grant, we seek funding to address the following specific aims: (1) Identify families with the congenital fibrosis syndromes for our clinical and genetic studies and analyze their DNA for linkage to the known CFEOM loci. (2) Define the anatomic and functional basis of CFEOM by high-resolution orbital MRI studies in affected members of genetically defined families. (3) Clone the CFEOM1 disease gene (which is mutated in the most common inherited form of the congenital fibrosis syndromes) and analyze CFEOM1 families for disease-causing mutations. (4) Initiate structural and functional characterization of the CFEOM1 RNA and protein product. Significance: The molecular bases of strabismic disorders remain poorly understood. Though rare, several of the fibrosis syndromes are inherited, and thus provide a unique opportunity to investigate the etiology of this subset of strabismic disorders. Our large collection of CFEOM1 families, coupled with a detailed physical map and access to genomic sequence within the CFEOM1 critical region, places us in a unique position to identify this disease gene. In addition, the correlation of this genetic data with the proposed clinical, anatomic, and functional characterization of genetically defined patients provides a unique and strong foundation for phenotype-genotype correlations and functional studies. By defining the genetic and anatomic bases of CFEOM1, we will develop a tool with which to study its molecular basis and to search for related fibrosis genes, and with which we should gain important new insights into brainstem cranial nerve development. These data will be invaluable to our understanding of the developmental roles of these genes, and should also contribute to improved therapy of the fibrosis syndromes.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY013583-03
Application #
6645427
Study Section
Special Emphasis Panel (ZRG1-VISB (02))
Program Officer
Chin, Hemin R
Project Start
2001-08-20
Project End
2006-07-31
Budget Start
2003-08-01
Budget End
2004-07-31
Support Year
3
Fiscal Year
2003
Total Cost
$460,638
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Cheng, Long; Desai, Jigar; Miranda, Carlos J et al. (2014) Human CFEOM1 mutations attenuate KIF21A autoinhibition and cause oculomotor axon stalling. Neuron 82:334-49
Desai, Jigar; Velo, Marie Pia Rogines; Yamada, Koki et al. (2012) Spatiotemporal expression pattern of KIF21A during normal embryonic development and in congenital fibrosis of the extraocular muscles type 1 (CFEOM1). Gene Expr Patterns 12:180-8
Miyake, Noriko; Demer, Joseph L; Shaaban, Sherin et al. (2011) Expansion of the CHN1 strabismus phenotype. Invest Ophthalmol Vis Sci 52:6321-8
Oystreck, Darren T; Engle, Elizabeth C; Bosley, Thomas M (2011) Recent progress in understanding congenital cranial dysinnervation disorders. J Neuroophthalmol 31:69-77
Tischfield, Max A; Engle, Elizabeth C (2010) Distinct alpha- and beta-tubulin isotypes are required for the positioning, differentiation and survival of neurons: new support for the 'multi-tubulin' hypothesis. Biosci Rep 30:319-30
Tischfield, Max A; Baris, Hagit N; Wu, Chen et al. (2010) Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140:74-87
Yang, Xian; Yamada, Koki; Katz, Bradley et al. (2010) KIF21A mutations in two Chinese families with congenital fibrosis of the extraocular muscles (CFEOM). Mol Vis 16:2062-70
Engle, Elizabeth C (2010) Human genetic disorders of axon guidance. Cold Spring Harb Perspect Biol 2:a001784
Demer, Joseph L; Clark, Robert A; Tischfield, Max A et al. (2010) Evidence of an asymmetrical endophenotype in congenital fibrosis of extraocular muscles type 3 resulting from TUBB3 mutations. Invest Ophthalmol Vis Sci 51:4600-11
Flaherty, Maree P; Balachandran, Chandra; Jamieson, Robyn et al. (2009) Congenital fibrosis of the extraocular muscles type 1, distinctive conjunctival changes and intrapapillary disc colobomata. Ophthalmic Genet 30:91-5

Showing the most recent 10 out of 31 publications