While a number of genes have been postulated to be involved in age-related macular degeneration (AMD), the leading cause of blindness among the elderly in the US, a comprehensive mRNA phenotype of the retinal pigment epithelium (RPE) in vivo is at present unknown. Determination of an RPE mRNA phenotype could identify the genes critical to the development of AMD, identify markers of disease, and lead to new preventative and treatment strategies. Basal deposits in Bruch's membrane are an early recognizable change that occur prior to degeneration of the RPE and are a histopathological marker for AMD. Recently, our laboratory identified an age-dependent accumulation of advanced glycation end products (AGEs) in Bruch's membrane and basal deposits. AGEs are structures formed during the series of nonenzymatic reactions between sugars or other precursors, and long-lived proteins that alter the phenotype of a variety of cell types. Our laboratory has also recently shown that AGEs alter the expression of genes involved in matrix regulation, cell polarity, and apoptosis in RPE cells. Our long term goal is to define an extensive mRNA phenotype of the RPE in health and AMD which will in turn, yield insights into the pathogenesis of AMD. Specifically, we want to define the component of that phenotype which is regulated by AGEs. We hypothesize that the presence of AGEs in basal deposits is responsible for a switch in the phenotype of RPE cells that is consistent with alterations in matrix regulation, RPE cell polarity, and apoptosis. To test this hypothesis we ask 3 questions: 1. Are the mRNA phenotypes of macular RPE cells overlying basal deposits and normal Bruch's membrane different? 2. Does AGE modified matrix induce an RPE mRNA phenotype in vitro that is a subset of the phenotype expressed by RPE cells overlying basal deposits? 3. Is a subset of the AGE induced mRNA phenotype of RPE cells mediated by the Receptor for Advanced Glycation End products? To answer these questions we will use laser capture microdissection to obtain pure samples of RPE cells from tissue specimens for mRNA phenotyping by microarray analysis. We will also utilize an in vitro AGE-matrix system to determine what subset of genes is regulated by AGEs. This project hopes to establish an extensive mRNA phenotype of the RPE in both health and AMD, and define a subset of genes induced by AGEs.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY014005-05
Application #
6895743
Study Section
Visual Sciences C Study Section (VISC)
Program Officer
Mariani, Andrew P
Project Start
2001-07-01
Project End
2006-05-31
Budget Start
2005-06-01
Budget End
2006-05-31
Support Year
5
Fiscal Year
2005
Total Cost
$408,750
Indirect Cost
Name
Johns Hopkins University
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Datta, Sayantan; Cano, Marisol; Ebrahimi, Katayoon et al. (2017) The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res 60:201-218
Wang, Lei; Cano, Marisol; Datta, Sayantan et al. (2016) Pentraxin 3 recruits complement factor H to protect against oxidative stress-induced complement and inflammasome overactivation. J Pathol 240:495-506
Wei, Hong; Xun, Zixian; Granado, Herta et al. (2016) An easy, rapid method to isolate RPE cell protein from the mouse eye. Exp Eye Res 145:450-455
Sinha, Debasish; Valapala, Mallika; Shang, Peng et al. (2016) Lysosomes: Regulators of autophagy in the retinal pigmented epithelium. Exp Eye Res 144:46-53
Wang, Lei; Ebrahimi, Katayoon B; Chyn, Michelle et al. (2016) Biology of p62/sequestosome-1 in Age-Related Macular Degeneration (AMD). Adv Exp Med Biol 854:17-22
Handa, James T; Tagami, Mizuki; Ebrahimi, Katayoon et al. (2015) Lipoprotein(A) with An Intact Lysine Binding Site Protects the Retina From an Age-Related Macular Degeneration Phenotype in Mice (An American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc 113:T5
Valapala, Mallika; Wilson, Christine; Hose, Stacey et al. (2014) Lysosomal-mediated waste clearance in retinal pigment epithelial cells is regulated by CRYBA1/?A3/A1-crystallin via V-ATPase-MTORC1 signaling. Autophagy 10:480-96
Wang, Lei; Kondo, Naoshi; Cano, Marisol et al. (2014) Nrf2 signaling modulates cigarette smoke-induced complement activation in retinal pigmented epithelial cells. Free Radic Biol Med 70:155-66
Cruz-Guilloty, Fernando; Saeed, Ali M; Duffort, Stephanie et al. (2014) T cells and macrophages responding to oxidative damage cooperate in pathogenesis of a mouse model of age-related macular degeneration. PLoS One 9:e88201
Cano, Marisol; Wang, Lei; Wan, Jun et al. (2014) Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in RPE cells. Free Radic Biol Med 69:1-14

Showing the most recent 10 out of 44 publications