Pseudomonas aeruginosa keratitis is a sight-threatening corneal disease associated with trauma and contact-lens wearing. Although an antibiotic regimen can eliminate the infectious organisms, the host inflammation that occurs, if not suppressed, can cause corneal scarring that can potentially lead to permanent vision loss in some patients. Previous studies from the laboratory revealed that human corneal epithelial cells (HCECs) sense Pseudomonas via recognition of flagellin, the structural protein of bacterial flagella, by Toll-like receptor-5 (TLR5) and respond to Pseudomonas-challenge by producing pro-inflammatory cytokines. To date, how the corneal inflammatory response is modulated after TLR stimulation is largely unresolved. We recently discovered that a prior exposure to flagellin resulted in cell reprogramming, as manifested by decreased production of pro-inflammatory cytokines and augmented expression of antimicrobial molecules in HCECs and in development of protective mechanisms, including enhanced bacterial clearance and downregulated expression of cytokines/chemokines, and accelerated inflammation resolution in the cornea of Pseudomonas-infected C57BL/6 (B6) mice. We hypothesize that TLR-mediated epithelial reprogramming is a key determinant of corneal innate defense and the underlying mechanisms can be exploited as novel approaches for anti-inflammatory and/or anti-infection therapies. To understand flagellin-induced cell reprogramming and ocular protective mechanisms, we propose the following Specific Aims: 1) To assess how the TLR5-mediated signaling pathways are modulated by the IRAK family of proteins and PI3K/AKT and what roles they play in acquiring tolerance phenotype in HCECs. This will be achieved by using siRNA and specific inhibitors to define the role of signal transducing molecules of the TLR-pathway in HCEC reprogramming and its consequences in vitro. 2) To determine how flagellin-induced epithelial reprogramming differentially regulates the expression of antimicrobial genes and modulates neutrophil infiltration and stromal cell activation in the cornea in response to Pseudomonas infection. This will be done using in vitro bacterial killing assay and co-culture of epithelial-neutrophil and epithelial-stromal cells. 3) To exploit the underlying mechanisms of tolerance/reprogramming as novel approaches for anti-inflammatory and anti-infection therapies in murine model of Pseudomonas keratitis. C57BL/6 mouse model of Pseudomonas keratitis, along with gene knockout mice, will be used to test this hypothesis and to determine therapeutic potential of flagellin in preventing infection- and inflammation-caused corneal tissue damage. The results of this study will provide a logical basis for the design of novel anti-inflammatory and anti-infection therapies for prophylaxis and/or treatment of bacterial keratitis.

Public Health Relevance

. This study explores the possibility of using flagellin as a prophylactic measure to prevent microbial keratitis and as an adjuvant therapy to traditional antibiotic regimen to suppress the ongoing inflammation after bacterial infection of the cornea. In the light of emerging antimicrobial resistance, the controversial role of corticosteroids, and an increased outbreak of contact solution-associated microbial keratitis, this study is of paramount importance and may lead to clinical trials for the use of flagellin in preventing and/or treating infectious keratitis. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
1R01EY017960-01A2
Application #
7461874
Study Section
Anterior Eye Disease Study Section (AED)
Program Officer
Shen, Grace L
Project Start
2008-05-01
Project End
2011-04-30
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
1
Fiscal Year
2008
Total Cost
$338,625
Indirect Cost
Name
Wayne State University
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
001962224
City
Detroit
State
MI
Country
United States
Zip Code
48202
Cui, Xinhan; Gao, Nan; Me, Rao et al. (2018) TSLP Protects Corneas From Pseudomonas aeruginosa Infection by Regulating Dendritic Cells and IL-23-IL-17 Pathway. Invest Ophthalmol Vis Sci 59:4228-4237
Sun, Haijing; Lee, Patrick; Yan, Chenxi et al. (2018) Inhibition of Soluble Epoxide Hydrolase 2 Ameliorates Diabetic Keratopathy and Impaired Wound Healing in Mouse Corneas. Diabetes 67:1162-1172
Gao, Nan; Me, Rao; Dai, Chenyang et al. (2018) Opposing Effects of IL-1Ra and IL-36Ra on Innate Immune Response to Pseudomonas aeruginosa Infection in C57BL/6 Mouse Corneas. J Immunol 201:688-699
Singh, Pawan Kumar; Guest, John-Michael; Kanwar, Mamta et al. (2017) Zika virus infects cells lining the blood-retinal barrier and causes chorioretinal atrophy in mouse eyes. JCI Insight 2:e92340
Ross, Bing X; Gao, Nan; Cui, Xinhan et al. (2017) IL-24 Promotes Pseudomonas aeruginosa Keratitis in C57BL/6 Mouse Corneas. J Immunol 198:3536-3547
Dong, Chen; Gao, Nan; Ross, Bing X et al. (2017) ISG15 in Host Defense Against Candida albicans Infection in a Mouse Model of Fungal Keratitis. Invest Ophthalmol Vis Sci 58:2948-2958
Gao, Nan; Liu, Xiaowei; Wu, Jiayin et al. (2017) CXCL10 suppression of hem- and lymph-angiogenesis in inflamed corneas through MMP13. Angiogenesis 20:505-518
Zhang, Xilin; Liu, Queping; Wang, Jie et al. (2016) TIM-4 is differentially expressed in the distinct subsets of dendritic cells in skin and skin-draining lymph nodes and controls skin Langerhans cell homeostasis. Oncotarget 7:37498-37512
Yan, Chenxi; Gao, Nan; Sun, Haijing et al. (2016) Targeting Imbalance between IL-1? and IL-1 Receptor Antagonist Ameliorates Delayed Epithelium Wound Healing in Diabetic Mouse Corneas. Am J Pathol 186:1466-80
Gao, Nan; Yan, Chenxi; Lee, Patrick et al. (2016) Dendritic cell dysfunction and diabetic sensory neuropathy in the cornea. J Clin Invest 126:1998-2011

Showing the most recent 10 out of 43 publications