This research project involves the development of experimental methods for detecting less receptive nuclei (13C, 15N and 2H) with special emphasis placed on 13C. The application of such methods to biologically important system and their theoretical consequences are stressed. The value of chemical shifts in structure correlations of liquid samples has been very well documented and these concepts are now being developed in the full shielding tensor. The three dimensional aspects of shielding tensors becomes one of the significant aspects of the proposal. Solid state work on either powders or single crystals is required to obtain shielding tensors and their principal orientations in the molecular frame. Use of tensor data along with theory is advancing our understanding of the origins of chemical shielding and its use in shift structure correlations. The expansion from one isotropic shift to six tensor parameters in solids provides details unavailable in isotropic liquid shifts. Thus, work will be directed towards the development of single crystal methods for biomolecules of a size not here-to-fore possible. The dipolar interactions, which averages to zero in isotropic liquids, also is readily studied in the solid state and its inverse cubic distance dependence contributes valuable structural information. The relaxation of 13C spin multiplets in CH, CH2 and CH3 groups provides information on molecular diffusional reorientation and these methods are proving to be beneficial in the study of segmental motion in flexible molecular chains. the increased use of multidimensional NMR methods is increasing the need for coupled relaxation methods and analysis tools which properly account for complex relaxation effects arising in coupled spin systems. the detailed treatment of model systems has now advanced to the point where these concepts and methods may be applied to small peptides of biological importance to determine the importance of molecular motion on functionality. The use of 2D pattern recognition methods in NMR are significantly advancing the use of NMR methods in biomedical fields, and the use of these methods for characterizing important natural products is being investigated. Use of such methods in the 2D INADEQUATE experiment have reduced the required sample size requirements by better than ten fold.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM008521-34
Application #
2168347
Study Section
Biophysical Chemistry Study Section (BBCB)
Project Start
1978-06-01
Project End
1997-05-31
Budget Start
1994-06-01
Budget End
1995-05-31
Support Year
34
Fiscal Year
1994
Total Cost
Indirect Cost
Name
University of Utah
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Halling, Merrill D; Orendt, Anita M; Strohmeier, Mark et al. (2010) Solid-state 13C NMR investigations of 4,7-dihydro-1H-tricyclopenta[def,jkl,pqr]triphenylene (sumanene) and indeno[1,2,3-cd]fluoranthene: Buckminsterfullerene moieties. Phys Chem Chem Phys 12:7934-41
Harper, James K; Doebbler, Jennifer A; Jacques, Elisabeth et al. (2010) A combined solid-state NMR and synchrotron X-ray diffraction powder study on the structure of the antioxidant (+)-catechin 4.5-hydrate. J Am Chem Soc 132:2928-37
Halling, Merrill D; Bell, Joshua D; Pugmire, Ronald J et al. (2010) Solid-State NMR spectra and long, intra-dimer bonding in the pi-[TTF](2)(2+) (TTF = tetrathiafulvalene) dication. J Phys Chem A 114:6622-9
Iuliucci, Robbie; Hoop, Cody L; Arif, Atta M et al. (2009) Redetermination of 1,4-dimethoxy-benzene. Acta Crystallogr Sect E Struct Rep Online 65:o251
Hoffman, Angela M; Mayer, Steven G; Strobel, Gary A et al. (2008) Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemistry 69:1049-56
Harper, James K; Strohmeier, Mark; Grant, David M (2007) Pursuing structure in microcrystalline solids with independent molecules in the unit cell using 1H-13C correlation data. J Magn Reson 189:20-31
Heider, Elizabeth M; Harper, James K; Grant, David M (2007) Structural characterization of an anhydrous polymorph of paclitaxel by solid-state NMR. Phys Chem Chem Phys 9:6083-97
Ma, Zhiru; Halling, Merrill D; Solum, Mark S et al. (2007) Ring current effects in crystals. Evidence from 13C chemical shift tensors for intermolecular shielding in 4,7-di-t-butylacenaphthene versus 4,7-di-t-butylacenaphthylene. J Phys Chem A 111:2020-7
Harper, James K; Grant, David M; Zhang, Yuegang et al. (2006) Characterizing challenging microcrystalline solids with solid-state NMR shift tensor and synchrotron X-ray powder diffraction data: structural analysis of ambuic acid. J Am Chem Soc 128:1547-52
Li, D; Owen, N L; Perera, P et al. (1994) Structure elucidation of three triterpenoid saponins from Alphitonia zizyphoides using 2D NMR techniques. J Nat Prod 57:218-24

Showing the most recent 10 out of 12 publications