Reproductive neurogenetics in Drosophila involves a widening array of behavioral and neural mutants as well as molecular manipulations involving factors that influence sex-specific features of the fly's nervous system. To extend the analysis of semi-classical courtship genes, the roles played by calcium-channel polypeptides and nucleic-acid binding proteins will be dissected. For the former of these two genes, cacophony, the experiments include molecular- genetic analysis of courtship-song defects and visual-system ones as well (the latter being caused by certain of the cac-locus mutations). The significance of posttranscriptional variation in channel quality will be assessed, including molecular manipulations and behavioral bioassays of putative RNA editing events involving cac s primary product. The no-on-transient-A gene also can be mutated to cause singing and visual abnormalities. The significance of nonA's spatial expression will be dissected, principally in terms of a novel abnormality of courtship-humming sounds associated with transgene manipulations of the normal allele. How nonA and the putative RNA-binding protein it encodes may interact with cac will be determined, in part by determining whether in vivo an and engineered nonA mutations affect post-transcriptional processing of the Ca2+-channel RNA cac's behavioral and molecular-genetics suggests one way that courtship songs diverge evolutionarily: by modulations of patterned neuronal outputs caused by calcium- channel variations; this will be investigated by analyzing inter- specific relatives of cac and bioassays of the molecular variants in transgenic males. The genetics of sex determination will be further merged with courtship studies by behavioral and pheromonal analysis of fruitless and doublesex mutants; the experiments include molecular neurogenetic dissection of courtship-hum abnormalities and analysis of sex-specific locomotor behavior. To move in certain new directions, the genetics of female receptivity will be analyzed by neurobiological and molecular studies of a new mutant; also, possible resets of a biological clock, induced by conditioned courtship stimuli, will be investigated to see if parallels can be drawn to a novel finding in this area from mammals. -- Reproduction seems on the face of it to have broad significance. Variations of these phenomena, caused genetically in organisms ranging up to humans, are being increasingly appreciated, analyzed, and manufactured experimentally. It is suggested that neurogenetic and molecular neurobiological findings and principles, stemming in part from studies of Drosophila courtship and mating, may contribute to the design and interpretation of investigations in this area, which would involve a variety of different organisms.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM021473-26S1
Application #
6698346
Study Section
Special Emphasis Panel (ZRG2)
Program Officer
Tompkins, Laurie
Project Start
1977-12-01
Project End
2003-12-07
Budget Start
2000-07-01
Budget End
2003-12-07
Support Year
26
Fiscal Year
2003
Total Cost
$76,559
Indirect Cost
Name
Brandeis University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
616845814
City
Waltham
State
MA
Country
United States
Zip Code
02454
Fore, Taylor R; Ojwang, Audrey A; Warner, Margaret L et al. (2011) Mapping and application of enhancer-trap flippase expression in larval and adult Drosophila CNS. J Vis Exp :
Bohm, Rudolf A; Welch, William P; Goodnight, Lindsey K et al. (2010) A genetic mosaic approach for neural circuit mapping in Drosophila. Proc Natl Acad Sci U S A 107:16378-83
Villella, Adriana; Hall, Jeffrey C (2008) Neurogenetics of courtship and mating in Drosophila. Adv Genet 62:67-184
Hall, Jeffrey C (2007) Issues revolving round the regulation of reproductively related genes in Drosophila. J Neurogenet 21:75-103
Villella, Adriana; Peyre, Jean-Baptiste; Aigaki, Toshiro et al. (2006) Defective transfer of seminal-fluid materials during matings of semi-fertile fruitless mutants in Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:1253-69
Kadener, Sebastian; Villella, Adriana; Kula, Elzbieta et al. (2006) Neurotoxic protein expression reveals connections between the circadian clock and mating behavior in Drosophila. Proc Natl Acad Sci U S A 103:13537-42
Billeter, Jean-Christophe; Villella, Adriana; Allendorfer, Jane B et al. (2006) Isoform-specific control of male neuronal differentiation and behavior in Drosophila by the fruitless gene. Curr Biol 16:1063-76
Villella, Adriana; Ferri, Sarah L; Krystal, Jonathan D et al. (2005) Functional analysis of fruitless gene expression by transgenic manipulations of Drosophila courtship. Proc Natl Acad Sci U S A 102:16550-7
Hall, Jeffrey C (2003) A neurogeneticist's manifesto. J Neurogenet 17:1-90
Chan, Betty; Villella, Adriana; Funes, Pablo et al. (2002) Courtship and other behaviors affected by a heat-sensitive, molecularly novel mutation in the cacophony calcium-channel gene of Drosophila. Genetics 162:135-53

Showing the most recent 10 out of 52 publications