We will continue to define the DNA sequences which regulate transcription of the ribosomal genes of the frog, Xenopus laevis. Specific projects are: 1) Define the internal structure of the ribosomal gene promoter. 2) Study the mechanism whereby repeated elements in the spacer influence promoter activity. 3) Study specific regulatory events such as nucleolar dominance and the effect of amino acid starvation. 4) Study the mechanism of termination.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM026624-08
Application #
3274032
Study Section
Molecular Biology Study Section (MBY)
Project Start
1979-08-01
Project End
1989-07-31
Budget Start
1986-08-01
Budget End
1987-07-31
Support Year
8
Fiscal Year
1986
Total Cost
Indirect Cost
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
075524595
City
Seattle
State
WA
Country
United States
Zip Code
98109
Aprikian, P; Moorefield, B; Reeder, R H (2001) New model for the yeast RNA polymerase I transcription cycle. Mol Cell Biol 21:4847-55
Aprikian, P; Moorefield, B; Reeder, R H (2000) TATA binding protein can stimulate core-directed transcription by yeast RNA polymerase I. Mol Cell Biol 20:5269-75
Moorefield, B; Greene, E A; Reeder, R H (2000) RNA polymerase I transcription factor Rrn3 is functionally conserved between yeast and human. Proc Natl Acad Sci U S A 97:4724-9
Lin, C W; Moorefield, B; Payne, J et al. (1996) A novel 66-kilodalton protein complexes with Rrn6, Rrn7, and TATA-binding protein to promote polymerase I transcription initiation in Saccharomyces cerevisiae. Mol Cell Biol 16:6436-43
Schultz, M C; Choe, S Y; Reeder, R H (1993) In vitro definition of the yeast RNA polymerase I enhancer. Mol Cell Biol 13:2644-54
Palmer, T D; Miller, A D; Reeder, R H et al. (1993) Efficient expression of a protein coding gene under the control of an RNA polymerase I promoter. Nucleic Acids Res 21:3451-7
Schultz, M C; Brill, S J; Ju, Q et al. (1992) Topoisomerases and yeast rRNA transcription: negative supercoiling stimulates initiation and topoisomerase activity is required for elongation. Genes Dev 6:1332-41
Schultz, M C; Choe, S Y; Reeder, R H (1991) Specific initiation by RNA polymerase I in a whole-cell extract from yeast. Proc Natl Acad Sci U S A 88:1004-8
McStay, B; Hu, C H; Pikaard, C S et al. (1991) xUBF and Rib 1 are both required for formation of a stable polymerase I promoter complex in X. laevis. EMBO J 10:2297-303
McStay, B; Frazier, M W; Reeder, R H (1991) xUBF contains a novel dimerization domain essential for RNA polymerase I transcription. Genes Dev 5:1957-68

Showing the most recent 10 out of 15 publications