Two types of genetic recombination events will be studied using defined in vitro systems and purified proteins derived from bacteria and yeast. The proteins to be studied are: 1) The FLP protein of the yeast 2 micron plasmid. This protein promotes a site-specific recombination event which results in the inversion of a segment of the 2 micron plasmid DNA relative to the rest of the plasmid. 2) The recA protein of E. coli. This protein plays a central role in homologous or general genetic recombination in bacteria. The long range goal of this project is to elucidate the chemical mechanisms by which these and similar proteins promote genetic recombination. The work will employ the full range of chemical, kinetic, physical, and genetic techniques available for biochemical analysis. The health relatedness of this work derives from the importance of genetic recombination in many basic biological processes. Especially important in this regard is the central role of genetic recombination events in the generation of antibody diversity and in transformation of mammalian cells by a number of DNA tumor viruses.
Stanage, Tyler H; Page, Asher N; Cox, Michael M (2017) DNA flap creation by the RarA/MgsA protein of Escherichia coli. Nucleic Acids Res 45:2724-2735 |
Lewis, Jacob S; Spenkelink, Lisanne M; Jergic, Slobodan et al. (2017) Single-molecule visualization of fast polymerase turnover in the bacterial replisome. Elife 6: |
Chen, Stefanie H; Byrne-Nash, Rose T; Cox, Michael M (2016) Escherichia coli RadD Protein Functionally Interacts with the Single-stranded DNA-binding Protein. J Biol Chem 291:20779-86 |
Bakhlanova, Irina V; Dudkina, Alexandra V; Wood, Elizabeth A et al. (2016) DNA Metabolism in Balance: Rapid Loss of a RecA-Based Hyperrec Phenotype. PLoS One 11:e0154137 |
Jaszczur, Malgorzata; Bertram, Jeffrey G; Robinson, Andrew et al. (2016) Mutations for Worse or Better: Low-Fidelity DNA Synthesis by SOS DNA Polymerase V Is a Tightly Regulated Double-Edged Sword. Biochemistry 55:2309-18 |
Ronayne, Erin A; Wan, Y C Serena; Boudreau, Beth A et al. (2016) P1 Ref Endonuclease: A Molecular Mechanism for Phage-Enhanced Antibiotic Lethality. PLoS Genet 12:e1005797 |
Leite, Wellington C; Galvão, Carolina W; Saab, Sérgio C et al. (2016) Structural and Functional Studies of H. seropedicae RecA Protein - Insights into the Polymerization of RecA Protein as Nucleoprotein Filament. PLoS One 11:e0159871 |
Gruber, Angela J; Olsen, Tayla M; Dvorak, Rachel H et al. (2015) Function of the N-terminal segment of the RecA-dependent nuclease Ref. Nucleic Acids Res 43:1795-803 |
Robinson, Andrew; McDonald, John P; Caldas, Victor E A et al. (2015) Regulation of Mutagenic DNA Polymerase V Activation in Space and Time. PLoS Genet 11:e1005482 |
Kim, Taejin; Chitteni-Pattu, Sindhu; Cox, Benjamin L et al. (2015) Directed Evolution of RecA Variants with Enhanced Capacity for Conjugational Recombination. PLoS Genet 11:e1005278 |
Showing the most recent 10 out of 120 publications