The RecA protein of E. coli promotes a DNA strand exchange reaction in vitro that provides a convenient molecular model for the central steps of homologous genetic recombination. This protein is the prototype for a family of recombinases found in all organisms. In humans, the primary RecA homologue (hRad51) is part of a major pathway for tumor suppression. The long-range goal of the research in this proposal is a detailed understanding of the regulation and function of RecA protein. The hypothesis that recombinational DNA repair of stalled replication forks is the primary function of RecA protein provides an intellectual framework. The project has evolved to include the RecA proteins of E. coli and D. radiodurans, as well as the Rad51 protein of yeast. There are four major areas of emphasis: (a) structure-function relationships, (b) general biochemistry of RecA family recombinases, (c) regulation of RecA, and (d) special functions of RecA protein. Structure-function efforts are focused on two initiatives. First, we are examining a number of mutant RecA proteins in which the coupling of ATP hydrolysis to one or more functions is disrupted. We also have several projects to elucidate the structure of RecA protein bound to DNA. Biochemical studies are focused on recombinase filament assembly and disassembly, DNA pairing and strand exchange, and the role of ATP hydrolysis in recombinase reactions. The work on the regulation of RecA protein includes efforts to investigate the function of the RecFOR, RecX, Dinl, RecL, RdgC, UvrD, and PsiAB proteins. Special functions of RecA under investigation include the RecA-stimulated translesion DNA synthesis reaction of DNA polymerase V, and may be extended to include a new effort to understand DNA crosslink repair.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM032335-27S2
Application #
7929939
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Portnoy, Matthew
Project Start
2009-09-30
Project End
2011-05-31
Budget Start
2009-09-30
Budget End
2011-05-31
Support Year
27
Fiscal Year
2009
Total Cost
$294,438
Indirect Cost
Name
University of Wisconsin Madison
Department
Biochemistry
Type
Schools of Earth Sciences/Natur
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Stanage, Tyler H; Page, Asher N; Cox, Michael M (2017) DNA flap creation by the RarA/MgsA protein of Escherichia coli. Nucleic Acids Res 45:2724-2735
Lewis, Jacob S; Spenkelink, Lisanne M; Jergic, Slobodan et al. (2017) Single-molecule visualization of fast polymerase turnover in the bacterial replisome. Elife 6:
Chen, Stefanie H; Byrne-Nash, Rose T; Cox, Michael M (2016) Escherichia coli RadD Protein Functionally Interacts with the Single-stranded DNA-binding Protein. J Biol Chem 291:20779-86
Bakhlanova, Irina V; Dudkina, Alexandra V; Wood, Elizabeth A et al. (2016) DNA Metabolism in Balance: Rapid Loss of a RecA-Based Hyperrec Phenotype. PLoS One 11:e0154137
Jaszczur, Malgorzata; Bertram, Jeffrey G; Robinson, Andrew et al. (2016) Mutations for Worse or Better: Low-Fidelity DNA Synthesis by SOS DNA Polymerase V Is a Tightly Regulated Double-Edged Sword. Biochemistry 55:2309-18
Ronayne, Erin A; Wan, Y C Serena; Boudreau, Beth A et al. (2016) P1 Ref Endonuclease: A Molecular Mechanism for Phage-Enhanced Antibiotic Lethality. PLoS Genet 12:e1005797
Leite, Wellington C; Galvão, Carolina W; Saab, Sérgio C et al. (2016) Structural and Functional Studies of H. seropedicae RecA Protein - Insights into the Polymerization of RecA Protein as Nucleoprotein Filament. PLoS One 11:e0159871
Gruber, Angela J; Olsen, Tayla M; Dvorak, Rachel H et al. (2015) Function of the N-terminal segment of the RecA-dependent nuclease Ref. Nucleic Acids Res 43:1795-803
Robinson, Andrew; McDonald, John P; Caldas, Victor E A et al. (2015) Regulation of Mutagenic DNA Polymerase V Activation in Space and Time. PLoS Genet 11:e1005482
Kim, Taejin; Chitteni-Pattu, Sindhu; Cox, Benjamin L et al. (2015) Directed Evolution of RecA Variants with Enhanced Capacity for Conjugational Recombination. PLoS Genet 11:e1005278

Showing the most recent 10 out of 120 publications