Molecular and cell biological approaches will be used to examine the mechanisms whereby Ca-sensitive adenylyl cyclases (ACs) are targeted to domains of high Ca. Experiments using plasma membrane fractionation procedures, cholesterol depletion and immunoprecipitation will be conducted to address the cellular basis for colocalization of ACs and a variety of Ca-entry channels. The mechanism of high affinity inhibition by Ca of AC5 and AC6 will be addressed initially be deletion mutagenesis. The mechanisms of low afffinity inhibition by Ca and its possible dependence on regulation by Mg will be addressed by site-directed mutagenesis in the C1a region of a number of differently-regulated ACs, exploiting developing information on the crystal structure of adenylyl cyclase.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM032483-15A1
Application #
6197421
Study Section
Pharmacology A Study Section (PHRA)
Program Officer
Long, Rochelle M
Project Start
1983-08-01
Project End
2004-06-30
Budget Start
2000-07-01
Budget End
2001-02-28
Support Year
15
Fiscal Year
2000
Total Cost
$201,333
Indirect Cost
Name
University of Colorado Denver
Department
Pharmacology
Type
Schools of Medicine
DUNS #
065391526
City
Aurora
State
CO
Country
United States
Zip Code
80045
Martin, Agnes C L; Cooper, Dermot M F (2006) Capacitative and 1-oleyl-2-acetyl-sn-glycerol-activated Ca(2+) entry distinguished using adenylyl cyclase type 8. Mol Pharmacol 70:769-77
Simpson, Rachel E; Ciruela, Antonio; Cooper, Dermot M F (2006) The role of calmodulin recruitment in Ca2+ stimulation of adenylyl cyclase type 8. J Biol Chem 281:17379-89
Crossthwaite, Andrew J; Ciruela, Antonio; Rayner, Timothy F et al. (2006) A direct interaction between the N terminus of adenylyl cyclase AC8 and the catalytic subunit of protein phosphatase 2A. Mol Pharmacol 69:608-17
Willoughby, Debbie; Masada, Nanako; Crossthwaite, Andrew J et al. (2005) Localized Na+/H+ exchanger 1 expression protects Ca2+-regulated adenylyl cyclases from changes in intracellular pH. J Biol Chem 280:30864-72
Smith, Karen E; Gu, Chen; Fagan, Kent A et al. (2002) Residence of adenylyl cyclase type 8 in caveolae is necessary but not sufficient for regulation by capacitative Ca(2+) entry. J Biol Chem 277:6025-31
Cioffi, Donna L; Moore, Timothy M; Schaack, Jerry et al. (2002) Dominant regulation of interendothelial cell gap formation by calcium-inhibited type 6 adenylyl cyclase. J Cell Biol 157:1267-78
Hu, Biao; Nakata, Hiroko; Gu, Chen et al. (2002) A critical interplay between Ca2+ inhibition and activation by Mg2+ of AC5 revealed by mutants and chimeric constructs. J Biol Chem 277:33139-47
Gu, Chen; Cali, James J; Cooper, Dermot M F (2002) Dimerization of mammalian adenylate cyclases. Eur J Biochem 269:413-21
Fagan, K A; Smith, K E; Cooper, D M (2000) Regulation of the Ca2+-inhibitable adenylyl cyclase type VI by capacitative Ca2+ entry requires localization in cholesterol-rich domains. J Biol Chem 275:26530-7
Gu, C; Cooper, D M (2000) Ca(2+), Sr(2+), and Ba(2+) identify distinct regulatory sites on adenylyl cyclase (AC) types VI and VIII and consolidate the apposition of capacitative cation entry channels and Ca(2+)-sensitive ACs. J Biol Chem 275:6980-6

Showing the most recent 10 out of 44 publications