Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM033247-06
Application #
3282704
Study Section
Microbial Physiology and Genetics Subcommittee 2 (MBC)
Project Start
1984-04-01
Project End
1989-12-31
Budget Start
1989-12-01
Budget End
1989-12-31
Support Year
6
Fiscal Year
1990
Total Cost
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
City
San Diego
State
CA
Country
United States
Zip Code
92037
Jang, Sooin; Harshey, Rasika M (2015) Repair of transposable phage Mu DNA insertions begins only when the E.?coli replisome collides with the transpososome. Mol Microbiol 97:746-58
Harshey, Rasika M (2014) Transposable Phage Mu. Microbiol Spectr 2:
Choi, Wonyoung; Saha, Rudra P; Jang, Sooin et al. (2014) Controlling DNA degradation from a distance: a new role for the Mu transposition enhancer. Mol Microbiol 94:595-608
Choi, Wonyoung; Jang, Sooin; Harshey, Rasika M (2014) Mu transpososome and RecBCD nuclease collaborate in the repair of simple Mu insertions. Proc Natl Acad Sci U S A 111:14112-7
Saha, Rudra P; Lou, Zheng; Meng, Luke et al. (2013) Transposable prophage Mu is organized as a stable chromosomal domain of E. coli. PLoS Genet 9:e1003902
Jang, Sooin; Sandler, Steven J; Harshey, Rasika M (2012) Mu insertions are repaired by the double-strand break repair pathway of Escherichia coli. PLoS Genet 8:e1002642
Lee, Jaemin; Harshey, Rasika M (2012) Loss of FlhE in the flagellar Type III secretion system allows proton influx into Salmonella and Escherichia coli. Mol Microbiol 84:550-65
Harshey, Rasika M (2012) The Mu story: how a maverick phage moved the field forward. Mob DNA 3:21
Lazova, Milena D; Butler, Mitchell T; Shimizu, Thomas S et al. (2012) Salmonella chemoreceptors McpB and McpC mediate a repellent response to L-cystine: a potential mechanism to avoid oxidative conditions. Mol Microbiol 84:697-711
Ge, Jun; Lou, Zheng; Cui, Hong et al. (2011) Analysis of phage Mu DNA transposition by whole-genome Escherichia coli tiling arrays reveals a complex relationship to distribution of target selection protein B, transcription and chromosome architectural elements. J Biosci 36:587-601

Showing the most recent 10 out of 46 publications