ACC synthase catalyzes the conversion of S- adenosylmethionine (SAM) to amino cyclopropane carboxylate (ACC). ACC is the immediate precursor to ethylene, the plant hormone responsible for, inter alia, wound healing, fruit ripening and senescence. We plan to solve X-ray structures and biochemically characterize SAM-analog complexes with wild type and mutant enzymes in order to understand the special chemistry leading to the formation of the unique cyclopropane ring. While rational enzyme design has enjoyed some success, directed evolution has opened up the possibility of discovering mutations far from the catalytic site of an enzyme that effect both catalytic rates and reaction specificity. This novel technology will be adopted to convert aspartate aminotransferase to tyrosine aminotransferase and ACC synthase to a SAM aminotransferase. The functions of two genes (yjiR and ydcR), which code for two previously unknown pyridoxal phosphate (PLP) binding proteins, will be studied by a combination of bioinformatics, biochemical and nutritional microbiology techniques. The one known SAM aminotransferase, diaminopelargonic acid (DAPA) synthase from the biotin synthetic pathway, will be investigated to try to understand how two enzymes process the same substrate to different products-ACC synthase directs SAM to ACC while DAPA synthase converts it to DAPA. Mutations in cystathionine-beta-synthase are frequently responsible for human homocystinuria. The mechanism of action of this PLP-dependent enzyme will be pursued with particular reference to try to understand how the mutations contribute to the pathology.
Showing the most recent 10 out of 72 publications