We wish to study the nature of biochemical interactions involved in DNA-DNA, and DNA-protein recognition. We also wish to understand the catalytic mechanism of DNA recombination. The site-specific recombination system of the 2 micron circle plasmid of yeast provides the opportunity to pursue both goals. The recombinase enzyme FLP recognizes a short, specific DNA sequence with a two fold axis of symmetry. The regions of the substrate involved in DNA-DNA interactions and protein-contacting have been mapped. Clues have been obtained concerning the chemistry of recombination. We plan to extend these studies using molecular genetic, biochemical, immunologic and structural approaches. We hope these investigations will reveal how a functional recombination complex is generated, and how strand cleavage, strand swapping, and ligation are effected during recombination. We would like to study the possible relevance of the recombination reaction to the physiology of 2 micron circle.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM035654-06
Application #
3288625
Study Section
Microbial Physiology and Genetics Subcommittee 2 (MBC)
Project Start
1990-01-01
Project End
1993-12-31
Budget Start
1991-01-01
Budget End
1991-12-31
Support Year
6
Fiscal Year
1991
Total Cost
Indirect Cost
Name
University of Texas Austin
Department
Type
Schools of Arts and Sciences
DUNS #
City
Austin
State
TX
Country
United States
Zip Code
78712
Rowley, Paul A; Kachroo, Aashiq H; Ma, Chien-Hui et al. (2010) Electrostatic suppression allows tyrosine site-specific recombination in the absence of a conserved catalytic arginine. J Biol Chem 285:22976-85
Kachroo, Aashiq H; Ma, Chien-Hui; Rowley, Paul A et al. (2010) Restoration of catalytic functions in Cre recombinase mutants by electrostatic compensation between active site and DNA substrate. Nucleic Acids Res 38:6589-601
Ma, Chien-Hui; Rowley, Paul A; Macieszak, Anna et al. (2009) Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination. EMBO J 28:1745-56
Ma, Chien-Hui; Kachroo, Aashiq H; Macieszak, Anna et al. (2009) Reactions of Cre with methylphosphonate DNA: similarities and contrasts with Flp and vaccinia topoisomerase. PLoS One 4:e7248
Ma, Chien-Hui; Kwiatek, Agnieszka; Bolusani, Swetha et al. (2007) Unveiling hidden catalytic contributions of the conserved His/Trp-III in tyrosine recombinases: assembly of a novel active site in Flp recombinase harboring alanine at this position. J Mol Biol 368:183-96
Du, Quan; Livshits, Alexei; Kwiatek, Agnieszka et al. (2007) Protein-induced local DNA bends regulate global topology of recombination products. J Mol Biol 368:170-82
Harshey, Rasika M; Jayaram, Makkuni (2006) The mu transpososome through a topological lens. Crit Rev Biochem Mol Biol 41:387-405
Bolusani, Swetha; Ma, Chien-Hui; Paek, Andrew et al. (2006) Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites. Nucleic Acids Res 34:5259-69
Yin, Zhiqi; Jayaram, Makkuni; Pathania, Shailja et al. (2005) The Mu transposase interwraps distant DNA sites within a functional transpososome in the absence of DNA supercoiling. J Biol Chem 280:6149-56
Konieczka, Jay H; Paek, Andrew; Jayaram, Makkuni et al. (2004) Recombination of hybrid target sites by binary combinations of Flp variants: mutations that foster interprotomer collaboration and enlarge substrate tolerance. J Mol Biol 339:365-78

Showing the most recent 10 out of 19 publications