We propose to continue a multidisciplinary project to understand the mechanisms by which aberrant RNA and DMAstructures trigger gene silencing in a model animal system, the nematode Caenorhabditis elegans.
The specific aims of the proposed research are 1. Investigate the roles and mechanisms for trigger amplification in the C. elegans gene silencing machinery. 2. Investigate interconnections between gene silencing, genome defense, and development in C. elegans. 3. Identify additional structures in DNA and RNA that act as triggers for gene silencing. 4. Continue to develop and refine tools and assays for studies of genetic activity and silencing in C. elegans. Studies of gene silencing have been of value from numerous perspectives and we hope the results of our work to impact several diverse aspects of biomedical research. First, an understanding of gene silencing mechanisms allows us to better design systems for expressing specific genes in vivo. Such expression systems can provide significant advantages for applications such as gene therapy, analysis of mutant protein function, protein production, and general investigation of protein activity. Second, as we understand mechanisms of gene silencing, we acquire the ability to specifically and effectively silence genes within cells or in an organism, generating a significant toolkit for functional genomic research, and aiding in the development of tools for gene-based therapeutics. Third, because gene silencing mechanisms are indicative of a variety of cellular gene regulation mechanisms, work on gne silencing has provided valuable insights into normal gene regulation. Fourth, many gene silencing mechanisms reflect the response of the cell/organism to DNA or RNA that is viewed as foreign. This type of response forms the basis of mechanisms in place to resist """"""""selfish DNA"""""""" (or selfish RNA) in the form of viruses and transposons. Studies of gene silencing can thus extend our understanding of natural mechanisms used to fight viral infection (and by extension allow those mechanisms to be more readily induced or effected when needed).

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM037706-23
Application #
7324068
Study Section
Molecular Genetics C Study Section (MGC)
Program Officer
Haynes, Susan R
Project Start
1986-12-01
Project End
2010-11-30
Budget Start
2007-12-01
Budget End
2008-11-30
Support Year
23
Fiscal Year
2008
Total Cost
$600,359
Indirect Cost
Name
Stanford University
Department
Pathology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Arribere, Joshua A; Fire, Andrew Z (2018) Nonsense mRNA suppression via nonstop decay. Elife 7:
Silas, Sukrit; Jain, Nimit; Stadler, Michael et al. (2018) A Small RNA Isolation and Sequencing Protocol and Its Application to Assay CRISPR RNA Biogenesis in Bacteria. Bio Protoc 8:
Mohr, Georg; Silas, Sukrit; Stamos, Jennifer L et al. (2018) A Reverse Transcriptase-Cas1 Fusion Protein Contains a Cas6 Domain Required for Both CRISPR RNA Biogenesis and RNA Spacer Acquisition. Mol Cell 72:700-714.e8
Silas, Sukrit; Lucas-Elio, Patricia; Jackson, Simon A et al. (2017) Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems. Elife 6:
Fu, Becky Xu Hua; Wainberg, Michael; Kundaje, Anshul et al. (2017) High-Throughput Characterization of Cascade type I-E CRISPR Guide Efficacy Reveals Unexpected PAM Diversity and Target Sequence Preferences. Genetics 206:1727-1738
Silas, Sukrit; Makarova, Kira S; Shmakov, Sergey et al. (2017) On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires. MBio 8:
Shoura, Massa J; Gabdank, Idan; Hansen, Loren et al. (2017) Intricate and Cell Type-Specific Populations of Endogenous Circular DNA (eccDNA) in Caenorhabditis elegans and Homo sapiens. G3 (Bethesda) 7:3295-3303
Gabdank, Idan; Ramakrishnan, Sreejith; Villeneuve, Anne M et al. (2016) A streamlined tethered chromosome conformation capture protocol. BMC Genomics 17:274
Silas, Sukrit; Mohr, Georg; Sidote, David J et al. (2016) Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science 351:aad4234
Bell, Ryan T; Fu, Becky X H; Fire, Andrew Z (2016) Cas9 Variants Expand the Target Repertoire in Caenorhabditis elegans. Genetics 202:381-8

Showing the most recent 10 out of 76 publications