Meiosis is the specialized cellular program that produces haploid male and female gametes from a diploid parental cell as required for sexual reproduction. Our research addresses the central unique feature of this program, a complex series of interactions between maternal and paternal homologs, in three areas: (I) Recombination-independent pairing. This process, which also occurs in mitotically-dividing cells of some organisms (""""""""somatic pairing""""""""), is one of the major chromosomal behaviors for which there is no hint of the fundamental molecular mechanism. We will apply high-throughput 3C analysis to identify pairing """"""""hot spots"""""""" and to examine the roles of specific variables of interest to pairing at a single defined locus. We will further analyze pairing interactions by motion correlation analysis of GFP-tagged loci in living cells. As time permits, we will begin to investigate the possibility of isolating (and then characterizing) paired molecules. (II) Recombination-related events. We will continue to analyze the basic nature of recombination at the DNA level by isolation and AFM visualization of recombination intermediates (notably double Holliday junctions) from a single recombination """"""""hot spot"""""""". We will initiate a study of crossover interference by searching for functions which, when overproduced, increase or decrease the robustness of this process; also, we will try to distinguish among possible models for interference by creating, and assessing the effects of, a defined """"""""loop"""""""" along a chromosome. Finally, we will continue to explore the roles of axis components for recombination by: studies of the """"""""mitotic"""""""" cohesin Mcd1/Scc1/Rad21; high resolution analysis of local variations in protein localization via linked MNase studies; and further definition of chromosome organization via high resolution analysis of cohesin and condensin localization along pachytene chromosomes. (III) Motion and mechanics. We will improve our methodology for isolation of individual pachytene chromosomes as objects for mechanical studies. We will pursue our recent discovery of actin- and telomere-based chromosomal motion using existing reagents and by searching for """"""""motion mutants"""""""". Defects in meiotic interhomolog interactions underlie many types of hereditary infertility as well as most chromosomal aneuploidies, all of which confer significant societal burdens (e.g. Downs syndrome). Basic understanding of these processes is crucial for diagnosis and potential amelioration of these conditions. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM044794-18
Application #
7319433
Study Section
Molecular Genetics C Study Section (MGC)
Program Officer
Portnoy, Matthew
Project Start
1990-07-01
Project End
2011-06-30
Budget Start
2007-07-01
Budget End
2008-06-30
Support Year
18
Fiscal Year
2007
Total Cost
$711,082
Indirect Cost
Name
Harvard University
Department
Microbiology/Immun/Virology
Type
Schools of Arts and Sciences
DUNS #
082359691
City
Cambridge
State
MA
Country
United States
Zip Code
02138
Gutu, Andrian; Chang, Frederick; O'Shea, Erin K (2018) Dynamical localization of a thylakoid membrane binding protein is required for acquisition of photosynthetic competency. Mol Microbiol 108:16-31
Mazur, Alexey K; Gladyshev, Eugene (2018) Partition of Repeat-Induced Point Mutations Reveals Structural Aspects of Homologous DNA-DNA Pairing. Biophys J 115:605-615
Gladyshev, Eugene (2017) Repeat-Induced Point Mutation and Other Genome Defense Mechanisms in Fungi. Microbiol Spectr 5:
Wang, Shunxin; Kleckner, Nancy; Zhang, Liangran (2017) Crossover maturation inefficiency and aneuploidy in human female meiosis. Cell Cycle 16:1017-1019
Gladyshev, Eugene; Kleckner, Nancy (2017) Recombination-independent recognition of DNA homology for repeat-induced point mutation. Curr Genet 63:389-400
Gladyshev, Eugene; Kleckner, Nancy (2017) DNA sequence homology induces cytosine-to-thymine mutation by a heterochromatin-related pathway in Neurospora. Nat Genet 49:887-894
Tessé, Sophie; Bourbon, Henri-Marc; Debuchy, Robert et al. (2017) Asy2/Mer2: an evolutionarily conserved mediator of meiotic recombination, pairing, and global chromosome compaction. Genes Dev 31:1880-1893
Wang, Shunxin; Hassold, Terry; Hunt, Patricia et al. (2017) Inefficient Crossover Maturation Underlies Elevated Aneuploidy in Human Female Meiosis. Cell 168:977-989.e17
White, Martin A; Wang, Shunxin; Zhang, Liangran et al. (2017) Quantitative Modeling and Automated Analysis of Meiotic Recombination. Methods Mol Biol 1471:305-323
Manhart, Carol M; Ni, Xiaodan; White, Martin A et al. (2017) The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans. PLoS Biol 15:e2001164

Showing the most recent 10 out of 62 publications