Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM054469-07
Application #
2193830
Study Section
Biochemistry Study Section (BIO)
Project Start
1995-09-02
Project End
1999-08-31
Budget Start
1996-09-01
Budget End
1997-08-31
Support Year
7
Fiscal Year
1996
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Biochemistry
Type
Schools of Medicine
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Wang, Ting; Cook, Ian; Falany, Charles N et al. (2014) Paradigms of sulfotransferase catalysis: the mechanism of SULT2A1. J Biol Chem 289:26474-80
Rodriguez, Sofia B; Leyh, Thomas S (2014) An enzymatic platform for the synthesis of isoprenoid precursors. PLoS One 9:e105594
Cook, Ian; Wang, Ting; Almo, Steven C et al. (2013) The gate that governs sulfotransferase selectivity. Biochemistry 52:415-24
Leyh, Thomas S; Cook, Ian; Wang, Ting (2013) Structure, dynamics and selectivity in the sulfotransferase family. Drug Metab Rev 45:423-30
Jing, Chaoran; Cornish, Virginia W (2013) Design, synthesis, and application of the trimethoprim-based chemical tag for live-cell imaging. Curr Protoc Chem Biol 5:131-55
Pinto, Rachel; Leotta, Lisa; Shanahan, Erin R et al. (2013) Host cell-induced components of the sulfate assimilation pathway are major protective antigens of Mycobacterium tuberculosis. J Infect Dis 207:778-85
Cook, Ian; Wang, Ting; Falany, Charles N et al. (2013) High accuracy in silico sulfotransferase models. J Biol Chem 288:34494-501
Cook, Ian; Wang, Ting; Almo, Steven C et al. (2013) Testing the sulfotransferase molecular pore hypothesis. J Biol Chem 288:8619-26
Cook, Ian; Wang, Ting; Falany, Charles N et al. (2012) A nucleotide-gated molecular pore selects sulfotransferase substrates. Biochemistry 51:5674-83
Rohn, Katie Jo; Cook, Ian T; Leyh, Thomas S et al. (2012) Potent inhibition of human sulfotransferase 1A1 by 17ýý-ethinylestradiol: role of 3'-phosphoadenosine 5'-phosphosulfate binding and structural rearrangements in regulating inhibition and activity. Drug Metab Dispos 40:1588-95

Showing the most recent 10 out of 46 publications