There has been an explosive increase in our understanding of RNA structure and ground breaking advances in defining the roles of RNAs in gene expression and regulation. Yet, our understanding of the chemical and biophysical properties of RNA that determine its biological function has advanced less quickly. This deficiency is due to the complexity of the problem, but also due to the lack of sufficient experimental tools for revealing mechanistic detail. The ribonucleoprotein enzyme ribonuclease P (RNase P), which catalyzes the essential 5'end maturation of tRNA precursors (ptRNAs), has emerged as an elegantly simple and broadly useful system to understand RNA structure and function including catalysis. The long term goal of our project is to understand, at a chemical level of detail, how the RNase P ribonucleoprotein achieves its enormous rate enhancement and its multiple substrate specificity. Essential to both processes is site-specific binding of Mg2+ ions. Integrated into our experimental analyses of RNase P are innovative research tools designed to overcome key experimental limitations in three areas: defining RNA-metal ion interactions (Raman spectroscopy);identifying catalytic interactions (kinetic isotope effects);and understanding multiple substrate recognition (high-throughput sequencing). RNase P, like many enzymes, processes multiple different substrates in the cell. This property raises the general problem of how the enzyme distinguishes between cognate and non-cognate substrates and how it accommodates the variation in structure between different substrates. We are comparing the kinetics of different ptRNA processing reactions, and applying a novel high-throughput method to identify the ptRNA sequences P that control optimal catalytic efficiency. Despite intense investigation, the catalytic modes employed by ribozymes, including RNase P, are not well understood or characterized experimentally. We are pursuing detailed mechanistic analyses to test proposed active site interactions by observing how site-specific functional group modifications in P RNA and ptRNA influence the charge distribution in the transition state. The interaction of solution Mg2+ ions is essential for the function of all RNAs, and establishing the relationships between the binding of individual ions or classes of ions is an area of intense interest. However, like most RNAs the linkages between individual ion interactions in P RNA, and the critical enzyme functions of binding and catalysis are not well understood. In the last project period, we developed a means to detect and quantify metal ion interactions with RNA phosphates using Raman spectroscopy. To follow up on these advances we are using Raman spectroscopy and direct ion association measurements to detect the uptake of ions upon formation of the ES complex and to test the roles of P4 residues in ion binding. Additionally we are developing methods to detect ion binding at individual phosphates using isotope-edited Raman.

Public Health Relevance

Cell function depends on complexes of RNA and protein to process RNAs and synthesize proteins, and these RNA-protein complexes are the target of numerous diagnostics, drugs and clinical therapies. The research will for the first time test directly how an essential RNA-protein complex called RNase P recognizes its substrate and accomplishes catalysis during an essential step in RNA biosynthesis.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM056740-14A1
Application #
8238454
Study Section
Macromolecular Structure and Function B Study Section (MSFB)
Program Officer
Gerratana, Barbara
Project Start
1998-01-01
Project End
2015-12-31
Budget Start
2012-01-01
Budget End
2012-12-31
Support Year
14
Fiscal Year
2012
Total Cost
$342,260
Indirect Cost
$124,260
Name
Case Western Reserve University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Jankowsky, Eckhard; Harris, Michael E (2017) Mapping specificity landscapes of RNA-protein interactions by high throughput sequencing. Methods 118-119:111-118
Jain, Niyati; Lin, Hsuan-Chun; Morgan, Christopher E et al. (2017) Rules of RNA specificity of hnRNP A1 revealed by global and quantitative analysis of its affinity distribution. Proc Natl Acad Sci U S A 114:2206-2211
Niland, Courtney N; Anderson, David R; Jankowsky, Eckhard et al. (2017) The contribution of the C5 protein subunit of Escherichia coli ribonuclease P to specificity for precursor tRNA is modulated by proximal 5' leader sequences. RNA 23:1502-1511
Mullins, Michael R; Rajavel, Malligarjunan; Hernandez-Sanchez, Wilnelly et al. (2016) POT1-TPP1 Binding and Unfolding of Telomere DNA Discriminates against Structural Polymorphism. J Mol Biol 428:2695-708
Harris, Michael E (2016) Theme and Variation in tRNA 5' End Processing Enzymes: Comparative Analysis of Protein versus Ribonucleoprotein RNase P. J Mol Biol 428:5-9
Niland, Courtney N; Zhao, Jing; Lin, Hsuan-Chun et al. (2016) Determination of the Specificity Landscape for Ribonuclease P Processing of Precursor tRNA 5' Leader Sequences. ACS Chem Biol 11:2285-92
Lin, Hsuan-Chun; Zhao, Jing; Niland, Courtney N et al. (2016) Analysis of the RNA Binding Specificity Landscape of C5 Protein Reveals Structure and Sequence Preferences that Direct RNase P Specificity. Cell Chem Biol 23:1271-1281
Niland, Courtney N; Jankowsky, Eckhard; Harris, Michael E (2016) Optimization of high-throughput sequencing kinetics for determining enzymatic rate constants of thousands of RNA substrates. Anal Biochem 510:1-10
Jankowsky, Eckhard; Harris, Michael E (2015) Specificity and nonspecificity in RNA-protein interactions. Nat Rev Mol Cell Biol 16:533-44
Kellerman, Daniel L; Simmons, Kandice S; Pedraza, Mayra et al. (2015) Determination of hepatitis delta virus ribozyme N(-1) nucleobase and functional group specificity using internal competition kinetics. Anal Biochem 483:12-20

Showing the most recent 10 out of 32 publications