Bacteria from the genera Bacillus and Clostridium produce unusually durable and long lived spores that are the infectious agent of Anthrax and Botulism, and which are assembled in the cytoplasm of another cell. This unique cell within a cell structure (the endospore) is produced by a phagocytosis-like process known as engulfment. During engulfment, the membrane of the larger mother cell migrates around the smaller forespore, until it is completely enclosed within the mother cell cytoplasm. Engulfment provides a dramatic example of the dynamic capabilities of the bacterial cell, but its mechanism remains unclear. We have developed new tools for the study of engulfment, membrane fusion and protein localization and identified mutants defective in these steps. The fusion defective mutant is defective in both the final step of engulfment and cell division, and affects a conserved protein also involved in the final stages of chromosome segregation. We suggest that these proteins coordinate chromosome segregation with the completion of cell division, to ensure that cell separation does not damage an incompletely segregated chromosome. We have also identified two mechanisms by which the membranes move around the forespore, one of which depends on the SpollD peptidoglycan hydrolase. We will take a combined cell biological, genetic and biochemical approach to study the spatial regulation of peptidoglycan hydrolysis, the protein-protein interactions that mediate engulfment, as well as to understand the mechanisms by which bacterial cells catalyze membrane fusion and are dynamically organized. Engulfment provides a dispensable system to study cell biological events that are essential for all bacteria, such as protein localization and membrane fusion. It also requires peptidoglycan hydrolases, which are found in all bacteria that synthesize peptidoglycan, and which are potentially lethal because their activity can result in cell lysis without strict spatial and temporal regulation. Indeed, the lethality of many commercial antibiotics requires these hydrolytic enzymes. Engulfment provides an ideal system for understanding how bacteria control these potentially lethal enzymes, which are attractive targets for novel antibiotics, and has the potential to identify new drug targets in proteins that remodel bacterial membranes or mediate localization of bacterial proteins. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM057045-10
Application #
7196971
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Shapiro, Bert I
Project Start
1998-01-01
Project End
2010-12-31
Budget Start
2007-01-01
Budget End
2007-12-31
Support Year
10
Fiscal Year
2007
Total Cost
$320,974
Indirect Cost
Name
University of California San Diego
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Riley, Eammon P; Trinquier, Aude; Reilly, Madeline L et al. (2018) Spatiotemporally regulated proteolysis to dissect the role of vegetative proteins during Bacillus subtilis sporulation: cell-specific requirement of ?H and ?A. Mol Microbiol 108:45-62
Lopez-Garrido, Javier; Ojkic, Nikola; Khanna, Kanika et al. (2018) Chromosome Translocation Inflates Bacillus Forespores and Impacts Cellular Morphology. Cell 172:758-770.e14
Chaikeeratisak, Vorrapon; Nguyen, Katrina; Khanna, Kanika et al. (2017) Assembly of a nucleus-like structure during viral replication in bacteria. Science 355:194-197
Miller, Marina; Tam, Arvin B; Mueller, James L et al. (2017) Cutting Edge: Targeting Epithelial ORMDL3 Increases, Rather than Reduces, Airway Responsiveness and Is Associated with Increased Sphingosine-1-Phosphate. J Immunol 198:3017-3022
Lamsa, Anne; Lopez-Garrido, Javier; Quach, Diana et al. (2016) Rapid Inhibition Profiling in Bacillus subtilis to Identify the Mechanism of Action of New Antimicrobials. ACS Chem Biol 11:2222-31
Nguyen, Kim B; Sreelatha, Anju; Durrant, Eric S et al. (2016) Phosphorylation of spore coat proteins by a family of atypical protein kinases. Proc Natl Acad Sci U S A 113:E3482-91
Piña, Francisco Javier; Fleming, Tinya; Pogliano, Kit et al. (2016) Reticulons Regulate the ER Inheritance Block during ER Stress. Dev Cell 37:279-88
Sahonero-Canavesi, Diana X; Sohlenkamp, Christian; Sandoval-Calderón, Mario et al. (2015) Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase. Environ Microbiol 17:3391-406
Yen Shin, Jae; Lopez-Garrido, Javier; Lee, Sang-Hyuk et al. (2015) Visualization and functional dissection of coaxial paired SpoIIIE channels across the sporulation septum. Elife 4:e06474
Ojkic, Nikola; López-Garrido, Javier; Pogliano, Kit et al. (2014) Bistable forespore engulfment in Bacillus subtilis by a zipper mechanism in absence of the cell wall. PLoS Comput Biol 10:e1003912

Showing the most recent 10 out of 47 publications