): All enveloped viruses use membrane fusion to infect a cell, and must bud through a cellular membrane to produce progeny viruses. Molecular information on these processes is critical to the understanding of viral disease, the development of novel anti-viral agents, and as a model for cellular membrane fusion reactions. The well-characterized alphavirus, Semliki Forest virus (SFV), enters cells via low pH-triggered membrane fusion, and exits by budding through the cell plasma membrane. Fusion is mediated by the SFV spike protein, which undergoes a defined series of conformational changes at acid pH. A critical feature of the SFV fusion reaction is its striking dependence on the presence of cholesterol and sphingolipid in the target bilayer. Dr. Kielian has also described a novel requirement for cholesterol in the SFV exit pathway. The overall goal of this grant is to define molecular features of the entry and exit of alphaviruses from cells. Her major hypothesis is that both SFV fusion and exit involve specific interactions of the viral spike protein with cholesterol in the cell membrane. She has isolated and characterized an SFV mutant (srf-3) that has strikingly more efficient fusion and exit from cholesterol-depleted cells than wt SFV. A single amino acid substitution in the E1 spike subunit, a change of proline 226 to serine, is responsible for the cholesterol-independence of both srf-3 fusion and exit. In vitro mutagenesis of this domain and isolation of new srf mutants will be used to define sequences that confer alphavirus cholesterol independence. The hypothesis is that srf-3 is less cholesterol-dependent for key E1- membrane interactions in fusion and exit. This will be tested by a sensitive new fusion assay using purified lipid components, by biochemical and immunological detection of E1 conformational changes and membrane insertion, and by cryo-electron microscopy of control and sterol-depleted virus. Dr. Kielian has developed a biochemical assay for the final steps of budding and release of cell surface spike proteins into SFV virions. This assay is based on cell surface biotinylation of the spike proteins and virus retrieval using streptavidin-conjugated magnetic particles. This system will be used to determine the role of cholesterol in the exit of wt SFV and srf-3, to characterize virus exit requirements in intact cells, and as the basis of experiments to reconstitute the cell surface budding of SFV in a semi-permeabilized cell system.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM057454-01
Application #
2599023
Study Section
Virology Study Section (VR)
Project Start
1999-02-01
Project End
2003-01-31
Budget Start
1999-02-01
Budget End
2000-01-31
Support Year
1
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Brown, Rebecca S; Wan, Judy J; Kielian, Margaret (2018) The Alphavirus Exit Pathway: What We Know and What We Wish We Knew. Viruses 10:
Stiles, Katie M; Kielian, Margaret (2016) Role of TSPAN9 in Alphavirus Entry and Early Endosomes. J Virol 90:4289-97
Martinez, Maria Guadalupe; Kielian, Margaret (2016) Intercellular Extensions Are Induced by the Alphavirus Structural Proteins and Mediate Virus Transmission. PLoS Pathog 12:e1006061
Ooi, Yaw Shin; Dubé, Mathieu; Kielian, Margaret (2015) BST2/tetherin inhibition of alphavirus exit. Viruses 7:2147-67
Kleinfelter, Lara M; Jangra, Rohit K; Jae, Lucas T et al. (2015) Haploid Genetic Screen Reveals a Profound and Direct Dependence on Cholesterol for Hantavirus Membrane Fusion. MBio 6:e00801
Zheng, Yan; Kielian, Margaret (2015) An alphavirus temperature-sensitive capsid mutant reveals stages of nucleocapsid assembly. Virology 484:412-20
Martinez, Maria Guadalupe; Snapp, Erik-Lee; Perumal, Geoffrey S et al. (2014) Imaging the alphavirus exit pathway. J Virol 88:6922-33
Kielian, Margaret (2014) Mechanisms of Virus Membrane Fusion Proteins. Annu Rev Virol 1:171-89
Ooi, Yaw Shin; Stiles, Katie M; Liu, Catherine Y et al. (2013) Genome-wide RNAi screen identifies novel host proteins required for alphavirus entry. PLoS Pathog 9:e1003835
Zheng, Yan; Kielian, Margaret (2013) Imaging of the alphavirus capsid protein during virus replication. J Virol 87:9579-89

Showing the most recent 10 out of 28 publications