Excision of introns from precursor messenger RNA by the spliceosome is a critical step in almost all human gene expression. This process is highly regulated, integrally linked with the transcription of genes and other processing events, such as polyadenylation and nucleotide modification. A better understanding of pre-mRNA splicing will be essential to further understand mechanisms that regulate splicing, that control patterns of alternative splicing, and that contribute to development, oncogenesis and retroviral infections. The mechanism by which the spliceosome recognizes the exact sites for the chemical events and how he reactions are catalyzed are not well understood. The long-term goals of this project are to understand interactions and rearrangements between spliceosome components and the RNA ligands that are substrates for the catalytic reactions. Ample evidence argues for multiple rearrangements of factors and multiple recognition events at the branch site. Investigation of these events -- which are not understood mechanistically -- will elucidate interactions and rearrangements among core components and may serve as a paradigm for other rearrangements and multiple recognition events that occur elsewhere in the spliceosome. This proposal focuses first on the first ATP-dependent step of spliceosome assembly - the stable binding of U2 snRNP around the branch region, and investigates the action of an ATPase, Prp5. As the first ATP-dependent event, this step provides a uniquely simplified system, for studying the action of a spliceosomal ATPase. Further experiments will focus on the mechanism and the consequences of a recently identified bridging interaction between U1 and U2 snRNPs that is mediated by Prp5. Finally, using a new genetic screen, we are investigating interactions between the branch site (and the 5' and 3' splices sites) and components of the spliceosome critical for the second catalytic reaction, interactions between the identified components and the RNA substrate, and interactions of the identified components with other constituents of the spliceosome -- with a particular bent as to mechanism by which these components interact to help juxtapose the reactants for the second chemical step.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM057829-08
Application #
7098099
Study Section
Cell Development and Function Integrated Review Group (CDF)
Program Officer
Rhoades, Marcus M
Project Start
1999-08-01
Project End
2008-07-31
Budget Start
2006-08-01
Budget End
2007-07-31
Support Year
8
Fiscal Year
2006
Total Cost
$387,131
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Kosmyna, Brian; Query, Charles C (2016) Structural biology: Catalytic spliceosome captured. Nature 537:175-176
Tang, Qing; Rodriguez-Santiago, Susana; Wang, Jing et al. (2016) SF3B1/Hsh155 HEAT motif mutations affect interaction with the spliceosomal ATPase Prp5, resulting in altered branch site selectivity in pre-mRNA splicing. Genes Dev 30:2710-2723
Wu, Guowei; Adachi, Hironori; Ge, Junhui et al. (2016) Pseudouridines in U2 snRNA stimulate the ATPase activity of Prp5 during spliceosome assembly. EMBO J 35:654-67
Chen, Weijun; Shulha, Hennady P; Ashar-Patel, Ami et al. (2014) Endogenous U2·U5·U6 snRNA complexes in S. pombe are intron lariat spliceosomes. RNA 20:308-20
Basak, Anindita; Query, Charles C (2014) A pseudouridine residue in the spliceosome core is part of the filamentous growth program in yeast. Cell Rep 8:966-73
Query, Charles C; Konarska, Maria M (2013) Structural biology: Spliceosome's core exposed. Nature 493:615-6
Yang, Fei; Wang, Xiu-Ye; Zhang, Zhi-Min et al. (2013) Splicing proofreading at 5' splice sites by ATPase Prp28p. Nucleic Acids Res 41:4660-70
Shao, Wei; Kim, Hyun-Soo; Cao, Yang et al. (2012) A U1-U2 snRNP interaction network during intron definition. Mol Cell Biol 32:470-8
Query, Charles C; Konarska, Maria M (2012) CEF1/CDC5 alleles modulate transitions between catalytic conformations of the spliceosome. RNA 18:1001-13
Trcek, Tatjana; Larson, Daniel R; Moldon, Alberto et al. (2011) Single-molecule mRNA decay measurements reveal promoter- regulated mRNA stability in yeast. Cell 147:1484-97

Showing the most recent 10 out of 24 publications