The goal of modern oligosaccharide synthesis is the efficient production of natural and unnatural oligosaccharides, and their mimetics, capable of interfering constructively in disease states. This interference may be brought about by the blocking of oligosaccharide processing enzymes, by disruption of bacterial cell wall biosynthesis, by modulating cell-cell recognition, by enhancing binding and selectivity of drugs to DNA, and by the provision of antigenic oligosaccharides in synthetic vaccines. All of these very desirable processes require the highly efficient synthesis of oligosaccharides. Ultimately it is to be hoped that oligosaccharide synthesis can be developed to a point at which programmable, automated solid phase synthesis is a real possibility. Although oligosaccharide synthesis has developed in leaps and bounds in the last decade or so, this goal is still a long way off. The reasons for this are multiple and reside in the complexity of the chemistry of formation of glycosidic bonds. An absolutely overwhelming number of methods toward this end have been devised, however, the vast majority of these have been developed empirically and they are therefore underpinned by very little detailed understanding of mechanism. The main thesis of this proposal is that the ultimate goal of automated oligosaccharide synthesis demands a simplification of the area and that this simplification can best be brought about by a detailed investigation of the mechanisms of a few of the more successful glycosylation reactions. It is hoped that such careful investigations will shed new light on the true nature of glycosylating species and so help standardize methods and conditions. Toward this end a series of investigations are proposed into the mechanism of several important classes of glycosylation reaction, namely the thioglycoside method with the formation of intermediate glycosyl triflates, the activation of thioglycosides by means of N-iodosuccinimide, and the trichloroacetimidate method. These studies will involve characterization of the actual intermediates following activation, and determination of the molecularity of the actual coupling processes by measurement of secondary alpha-deuterium kinetic isotope effects. Neighboring group participation is of critical importance for controlling stereochemistry in many types of glycosylation, but its understanding lags far behind its level of application. In particular we will focus on neighboring group participation by esters at the 3-position, both in terms of the use of this effect in alpha-glucosylation and the like, and in terms of preventing this participation yet retaining the powerful disarming ability of an ester at the 3-position. We will also undertake a study of N-acetylneuraminic acid chemistry with the two fold intention of developing improved stereoselective glycosylation protocols for the formation of alpha-sialyl glycosides, and of improving the reactivity of sialic acid derivatives as glycosyl acceptors.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM062160-06
Application #
7123508
Study Section
Special Emphasis Panel (ZRG1-BPC-B (02))
Program Officer
Schwab, John M
Project Start
2000-12-01
Project End
2007-08-17
Budget Start
2006-09-01
Budget End
2007-08-17
Support Year
6
Fiscal Year
2006
Total Cost
$265,749
Indirect Cost
Name
University of Illinois at Chicago
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Amarasekara, Harsha; Dharuman, Suresh; Kato, Takayuki et al. (2018) Synthesis of Conformationally-Locked cis- and trans-Bicyclo[4.4.0] Mono-, Di-, and Trioxadecane Modifications of Galacto- and Glucopyranose; Experimental Limiting 3JH,H Coupling Constants for the Estimation of Carbohydrate Side Chain Populations and Beyon J Org Chem 83:881-897
Liao, Xiaoxiao; Vetvicka, Vaclav; Crich, David (2018) Synthesis and Evaluation of 1,5-Dithia-D-laminaribiose, Triose and Tetraose as Truncated ?-(1?3)-Glucan Mimetics. J Org Chem :
Wen, Peng; Crich, David (2018) Allylic Strain as a Stereocontrol Element in the Hydrogenation of 3-Hydroxymethyl-cyclohex-3-en-1,2,5-triol Derivatives. Synthesis of the Carbasugar Pseudo-2-deoxy-?-D-glucopyranose. Tetrahedron 74:5183-5191
Adero, Philip Ouma; Amarasekara, Harsha; Wen, Peng et al. (2018) The Experimental Evidence in Support of Glycosylation Mechanisms at the SN1-SN2 Interface. Chem Rev 118:8242-8284
Dhakal, Bibek; Crich, David (2018) Synthesis and Stereocontrolled Equatorially Selective Glycosylation Reactions of a Pseudaminic Acid Donor: Importance of the Side-Chain Conformation and Regioselective Reduction of Azide Protecting Groups. J Am Chem Soc 140:15008-15015
Adero, Philip O; Jarois, Dean R; Crich, David (2017) Hydrogenolytic cleavage of naphthylmethyl ethers in the presence of sulfides. Carbohydr Res 449:11-16
Wen, Peng; Crich, David (2017) Blue Light Photocatalytic Glycosylation without Electrophilic Additives. Org Lett 19:2402-2405
Dhakal, Bibek; Bohé, Luis; Crich, David (2017) Trifluoromethanesulfonate Anion as Nucleophile in Organic Chemistry. J Org Chem 82:9263-9269
Popik, Oskar; Dhakal, Bibek; Crich, David (2017) Stereoselective Synthesis of the Equatorial Glycosides of Legionaminic Acid. J Org Chem 82:6142-6152
Dhakal, Bibek; Buda, Szymon; Crich, David (2016) Stereoselective Synthesis of 5-epi-?-Sialosides Related to the Pseudaminic Acid Glycosides. Reassessment of the Stereoselectivity of the 5-Azido-5-deacetamidosialyl Thioglycosides and Use of Triflate as Nucleophile in the Zbiral Deamination of Sialic Acid J Org Chem 81:10617-10630

Showing the most recent 10 out of 81 publications