Maternal inheritance of germ plasm ribonucleoparticles (GP RNPs) results in the activation of a conserved gene expression program for primordial germ cell specification, and we use the zebrafish as a vertebrate model system to study this process. Zebrafish maternally inherited GP RNPs have co-opted the cytoskeletal machinery to reach progressive levels of multimerization: aggregation prior to furrow initiation (pre- aggregation), recruitment to the furrow during its initiation, and distal compaction along th furrow undergoing maturation. These sequential processes result in the formation of four large masses of aggregated GP RNPs, which will eventually confer germ cell specification. The overarching hypothesis of this proposal is that increases in GP RNP multimerization prior to and during furrow formation are based on actomyosin-dependent rearrangements of the cytoskeleton, mediated by myosin II motors associated with GP RNPs. We hypothesize that rearrangements leading to various stages of this process, pre-aggregation, furrow recruitment and distal compaction, have a common underlying mechanistic basis. We will test models of actomyosin interactions that may result in GP RNP multimerization prior to and during furrow initiation (Aim 1) and during furrow maturation (Aim 2). We further hypothesize that these underlying mechanisms are modified differently to produce different cellular outputs.
In Aim 1, we will test the hypothesis that, prior to and during furrow initiation, a GP RNP- associated f-actin network is modified by outwardly growing astral microtubules, a process that is coupled to the global activation of GP RNP-associated myosin II.
In Aim 2, we will test the hypothesis that, during furrow maturation, slow calcium waves associated with cytokinesis confer a medial-to-distal bias of myosin II activity and/or cytoskeletal dynamics that result in GP RNP compaction at distal ends of the furrow. Our findings will provide insights into novel fundamental mechanisms for the segregation of cell fate determinants. Recent studies have shown a link between germ line genes and pluripotency and tumorigenicity, and understanding mechanisms of germ plasm segregation will provide knowledge applicable to reproductive, regenerative and cancer biology.
Germ line cell determination is essential to produce gametes and for reproduction. In addition, germ line genes have been implicated in the induction of pluripotency and tumorigenesis. Here we propose to study in detail cellular mechanisms involved in the segregation of specialized determinants that confer the germ cell fate. Such knowledge may allow the manipulation of cellular processes leading to cell fate determination, and will provide advances relevant to reproductive, regenerative, and cancer biology.
Showing the most recent 10 out of 26 publications