Bacterial nitrogenases catalyze the reduction (""""""""fixation"""""""") of N/2 to ammonia, an amazing process that gives the precursor to all nitrogen-containing biomolecules. Because it is the ultimate multielectron reduction, discovery of the detailed mechanism of nitrogenase is a great challenge in biochemistry. N2 reduction occurs at a metal cluster called the FeMoco. After addition of electrons and protons, the FeMoco somehow binds, breaks, and protonates N2 to NH4*. Mutations near the FeMoco show that N2 and other substrates bind near the iron-rich center of the cluster. Based on literature crystallographic, spectroscopic, and mechanistic studies on nitrogenase, we have formulated a reasonable iron-based mechanism for reduction and N2 binding. This mechanism, based on low-coordinate iron, serves as our guiding hypothesis. Key intermediates have iron with only 3 or 4 attachments, and others with Fe-H bonds. However, the literature has few synthetic 3-coordinate iron compounds, and no Fe-H complexes with a coordination number of four or less. This proposal describes the systematic study of synthetic low-coordinate iron compounds: their properties, spectroscopic signatures, reactivity toward nitrogenase substrates, and characteristic reaction patterns. Experiments are chosen to address several steps of the hypothetical mechanism, including reductive activation, N2 binding, N2 reactions and cleavage, and N-H bond formation. Because isolated Fe-H complexes completely break multiple bonds, they will be studied as reactivity models for nitrogenase intermediates. Multimetallic complexes with constrained geometry will show the arrangement most conducive to N2 cleavage. Mechanistic studies on key reactions will clarify allowed and forbidden reactions of iron atoms like those in the hypotheticaL FeMoco mechanism. These studies will elucidate the fundamentals of low-coordinate iron chemistry, which is necessary to understand the workings of the FeMoco and large synthetic clusters.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM065313-03
Application #
7038218
Study Section
Metallobiochemistry Study Section (BMT)
Program Officer
Preusch, Peter C
Project Start
2004-04-01
Project End
2009-03-31
Budget Start
2006-04-01
Budget End
2007-03-31
Support Year
3
Fiscal Year
2006
Total Cost
$193,786
Indirect Cost
Name
University of Rochester
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
McWilliams, Sean F; Bunting, Philip C; Kathiresan, Venkatesan et al. (2018) Isolation and characterization of a high-spin mixed-valent iron dinitrogen complex. Chem Commun (Camb) 54:13339-13342
Broere, Daniel L J; Mercado, Brandon Q; Bill, Eckhard et al. (2018) Alkali Cation Effects on Redox-Active Formazanate Ligands in Iron Chemistry. Inorg Chem 57:9580-9591
Broere, Daniël L J; Holland, Patrick L (2018) Boron compounds tackle dinitrogen. Science 359:871
Skubi, Kazimer L; Holland, Patrick L (2018) So Close, yet Sulfur Away: Opening the Nitrogenase Cofactor Structure Creates a Binding Site. Biochemistry 57:3540-3541
DeRosha, Daniel E; Holland, Patrick L (2018) Incorporating light atoms into synthetic analogues of FeMoco. Proc Natl Acad Sci U S A 115:5054-5056
Broere, Daniël L J; Mercado, Brandon Q; Lukens, James T et al. (2018) Reversible Ligand-Centered Reduction in Low-Coordinate Iron Formazanate Complexes. Chemistry 24:9417-9425
Broere, Daniël L J; Mercado, Brandon Q; Holland, Patrick L (2018) Selective Conversion of CO2 into Isocyanate by Low-Coordinate Iron Complexes. Angew Chem Int Ed Engl 57:6507-6511
Chen, Jingguang G; Crooks, Richard M; Seefeldt, Lance C et al. (2018) Beyond fossil fuel-driven nitrogen transformations. Science 360:
McWilliams, Sean F; Bill, Eckhard; Lukat-Rodgers, Gudrun et al. (2018) Effects of N2 Binding Mode on Iron-Based Functionalization of Dinitrogen to Form an Iron(III) Hydrazido Complex. J Am Chem Soc 140:8586-8598
Pelmenschikov, Vladimir; Gee, Leland B; Wang, Hongxin et al. (2018) High-Frequency Fe-H Vibrations in a Bridging Hydride Complex Characterized by NRVS and DFT. Angew Chem Int Ed Engl 57:9367-9371

Showing the most recent 10 out of 72 publications